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Introduction

• Species sampling models (Pitman, 1996) are class of discrete Bayesian nonparametric
priors that model the sequential appearence of distinct tags in a sequence of
labelled objects

• The tags are metaphorically called distinct species, and can be also interpreted as
clusters. Thus, very useful to model species novelty

• The field dates back to 50 years ago, when Ferguson (1973) introduced the Dirichlet
process. Since then...

• ... rich theoretical and methodological development in mixture modeling settings,
such as clustering, density estimation, community detection, species discovery and
more

• However, these models have found limited application among ecologists, whose
primary aim often involves the modeling of actual species
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Dissertation goal

• Our goal is to open a path towards a broader use of species sampling model-based
methods, especially in applied ecological settings

Theory
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Overview of species sampling models
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Species sampling priors

• A species sampling model is a random probability measure p̃ defined as

p̃ =
∞∑
j=1

πjδθj , θj
iid∼ P0,

∞∑
j=1

πj = 1,

where πj are random weights and θj are atoms from a (diffuse) baseline distribution P0

• When some exchangeable random variables (Xn)n≥1 are from p̃, namely

X1, . . . , Xn | p̃ iid∼ p̃, n ≥ 1,

the discreteness makes the Xi s take on Kn = k distinct species, called X ∗
1 , . . . , X ∗

k ,
with frequencies n1, . . . , nk

• Under p̃, the units {1, . . . , n} are partitioned into clusters C1, . . . , Ck , with
Cj = {i : Xi = X ∗

j }, and nj = |Cj |
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Famous example: the Dirichlet process

• The Dirichlet process p̃ ∼ dp(αP0) with precision parameter α > 0 is

p̃ =
∞∑
j=1

πjδθj , πj = vj

j−1∏
h=1

(1 − vh), vj
iid∼ Be(1, α),

• The resulting exchangeble partition probability function (EPPF) is

P(Πn = {C1, . . . , Ck} | α) = αk

(α)n

k∏
j=1

(nj − 1)!

where (α)n = Γ(α + n)/Γ(α) is the ascending factorial

• The random partition is generated with an urn scheme

P(Xn+1 ∈A | X1,. . . ,Xn) =
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Beyond the Dirichlet process: Gibbs-type priors

• A Gibbs-type prior (Gnedin and Pitman, 2005; De Blasi et al., 2015) is a species
sampling model where the EPPF is

P(Πn = {C1, . . . , Ck}) = Vn,k

k∏
j=1

(1 − σ)nj , σ < 1

• The coefficients satisfy the forward recursion

Vn,k = (n − σ)Vn+1,k + Vn+1,k+1,

for any k = 1, . . . , n and n ≥ 1, with V1,1 = 1

Dirichlet process, σ = 0

Vn,k =
αk

(α)n

Pitman–Yor process, σ ∈ (0, 1)

Vn,k =

∏k−1
i=1

(α + iσ)

(α + 1)n−1

Dirichlet-multinomial,
σ < 0, H ∈ N

Vn,k =
|σ|k−1

∏k−1
i=1

(H − i)

(|σ|H + 1)n−1
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Sequential predictive rule and number of clusters

• The predictive rule for the species of Xn+1 given a sample X1, . . . , Xn under a
Gibbs-type process has a simple form:

P(Xn+1 ∈ A | X1, . . . , Xn) = Vn+1,k+1

Vn,k
P0(A)︸ ︷︷ ︸

New species

+ Vn+1,k

Vn,k

k∑
j=1

(nj − σ)δX∗
j

(A)︸ ︷︷ ︸
Observed species X∗

j

• The distribution of the resulting number of clusters is

P(Kn = k) = Vn,k
C (n, k; σ)

σk ,

where C (n, k; σ) is the generalized factorial coefficient

Dirichlet process, σ = 0
Kn ∼ α log n

Pitman–Yor process, σ ∈ (0, 1)
Kn ∼ nσ

Dirichlet-multinomial,
σ < 0, H ∈ N

Kn → H
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Bayesian nonparametric modeling of latent partitions via
Stirling-gamma priors
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Dirichlet process mixture models

• A Dirichlet process mixture models observations Y1, . . . , Yn as

Yi | Xi
ind∼ f (y | Xi ), Xi | p̃ iid∼ p̃, p̃ ∼ dp(αP0), (i = 1, . . . , n)

• The discreteness allows us to find Kn clusters in the data via ties among X1, . . . , Xn.
However, fixing the precision α is a highly informative choice

α Fixed, high Fixed, low Random, high Random, low
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• Letting α ∼ π(α) robustifies the analysis. However, why is it the case? And what
prior should we choose?
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The random precision parameter

• When α ∼ π(α) in a Dirichlet process, we have a Gibbs-type partition with EPPF

P(Πn = {C1, . . . , Ck}) = Vn,k

k∏
j=1

(nj − 1)!, Vn,k =
∫
R+

αk

(α)n
π(α)dα

All Gibbs-type priors with σ = 0 have this representation (Gnedin and Pitman, 2005)

• Common choice is the gamma prior α ∼ Ga(a, b) as in Escobar and West (1995)

• The induced prior on the number of clusters is

P(Kn = k) = Vn,k |s(n, k)|

where s(n, k) are called Stirling-numbers of the first kind, but does not have an
analytic form

• This complicates prior elicitation. For example, E(Kn) =?
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Application: community detection in a colony of worker ants

Mersch et al (2013)
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• Three groups of ant workers: foragers, cleaners, and nurses. We want to incorporate
this into out model while ensuring robustness
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The Stirling-gamma distribution

Definition

A positive random variable follows a Stirling-gamma distribution α ∼ Sg(a, b, m) with
parameters a, b > 0 and m ∈ N satisfying 1 < a/b < m, if its density function is

p(α) = 1
Sa,b,m

αa−1

{(α)m}b , Sa,b,m =
∫
R+

αa−1

{(α)m}b dα.

• Heavy-tailed distribution
• Sa,b,m < ∞ for appropriate choice of a, b and

m. If these are all integers, Sa,b,m has a
closed-form expression

Proposition

Let α ∼ Sg(a, b, m). Then, the following
convergence in distribution holds:

α log m → γ, γ ∼ Ga(a − b, b), m → ∞.
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The Stirling-gamma process

• When α ∼ Sg(a, b, m), we have a Stirling-gamma process, whose Gibbs-type
coefficients are

Vn,k = Va,b,m(n, k)
Va,b,m(1, 1) , Va,b,m(n, k) =

∫
R+

αa+k−1

{(α)m}b(α)n
dα

Theorem

Let α ∼ Sg(a, b, m) and Da,b,m = E{
∑m−1

i=0 α2/(α + i)2}. The number of clusters Km
obtained from the first m random variables X1, . . . , Xm is distributed as

P(Km = k) = Va,b,m(m, k)
Va,b,m(1, 1) |s(m, k)|,

for k = 1, . . . , m, with mean and variance equal to

E(Km) = a
b , var(Km) = b + 1

b

( a
b − Da,b,m

)
.

• Interpretation: a/b is a location, b is a precision and m is a reference sample size
• We can show that Da,b,m ≈ 1. This is very useful for elicitation!
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Asymptotic behavior of the number of clusters

Theorem

The following convergence in distribution holds for the number of clusters at m:

Km → K∞, K∞ ∼ 1 + Negbin
(

a − b,
b

b + 1

)
, m → ∞.

• Notice that m is a fixed quantity. According to Pitman (1996), we still have that
Kn/ log n → α ∼ Sg(a, b, m)

• Roughly speaking, the logarithmic convergence to zero of the Stirling-gamma
counterbalances the divergence of the number of clusters Kn

• In contrast, the Dirichlet process has a Poisson-type behavior: letting α = λ/ log m
for some λ > 0, then Km → K∞, K∞ ∼ 1 + Po(λ) for m → ∞.

• A random α grants additional robustness!
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The conjugate Stirling-gamma prior

• A simplification occurs when m = n, i.e. when the prior depends on the sample size

• The EPPF of a Dirichlet process is an exponential family after writing ξ = log α

P(Πn = {C1, . . . , Ck} | ξ) ∝ exp{kξ − K(ξ, n)}

where K(ξ, n) = log Γ(eξ + n) − log Γ(eξ) is the cumulant generating function

• Diaconis and Ylvisaker (1979): every exponential family admits a conjugate prior

Proposition
When α ∼ Sg(a, b, n). Then, (α | Πn = {C1, . . . , Ck}) ∼ Sg(a + k, b + 1, n).

• This follows from a simple Bayesian update

p(α | Πn = {C1, . . . , Ck}) ∝ p(α)p(Πn = {C1, . . . , Ck} | α) ∝ αa−1

{(α)n}b
αk

(α)n
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Projectivity and the population of partition framework

• The dependency on the sample size is useful, since E(Kn) = a/b. The Gibbs-type
recursion characterizing the coefficients Vn,k no longer holds

Vn,k ̸= kVn+1,k + Vn+1,k+1

• This breaks the projectivity of the species sampling model. Problematic when
extrapolating from the sample to the general population, but less so when clustering

• Population of partition framework: we observe N partitions of the same units
{1, . . . , n}, namely Πn,N = (Πn,1, . . . , Πn,N), from a Dirichlet process with shared α

P(Πn,s = {C1,s , . . . , Cks ,s} | α) = αks

(α)n

ks∏
j=1

(nj,s − 1)!, (s = 1, . . . , N)

• If α ∼ Sg(a, b, n), then (α | Πn,N) ∼ Sg
(

a +
∑N

s=1 ks , b + N, n
)
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Back to ant community detection

• We detect ant communities in each day via a stochastic block model where edge
probabilities are

P(Yi,j,s = 1 | Zi,s = h, Zj,s = h′, ν) = νh,h′,s , νh,h′,s ∼ Be(1, 1),

with Zi,s = h if node i ∈ Ch,s in network s, whose partition is Πn,s = {C1,s , . . . , Cks ,s}

• The quantity νh,h′,s is the edge probability in the block identified by Ch,s and Ch′,s

Prior Posterior,  Day 2 Posterior,  Day 4 Posterior,  Day 6 Posterior,  Day 8
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Bayesian modeling of sequential discoveries

Alessandro Zito (Duke) Ecological modeling via species sampling priors Dissertation in Statistical Science 18 / 36



Sequential discoveries

• We re-frame the number of new species (Kn)n≥1, called accumulation curve, via some
discovery indicators (Dn)n≥1

Kn =
n∑

i=1

Di , Di = 1{Xi = “new”}

Figure: The classic species sampling models are sometimes not flexible enough to capture the
in- and out-of-sample accumulation curve trajectories. Moreover, Kn → ∞ in the Dirichlet and
in the Pitman–Yor, but we may want a finite species richness K∞ < ∞
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Application: fungal biodiversity

• When doing high-throughput sequencing of DNA, the resulting (Xi )n
i=1 are called

operational taxonomic units (otus) - a proxy for species based on DNA similarity.

• How far is each curve from saturation? How much should be keep on sequencing
our samples?
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Sequential Discovery Framework

• Let T be a continuous latent variable on (0, ∞) with strictly decreasing survival
function S(t; θ) and θ ∈ Θ ⊂ Rp

• The discovery probability at n ≥ 1 is equal to

πn = P(Dn = 1) = P(Tn > n − 1) = S(n − 1; θ)

where (Tn)n≥1 are iid distributed as T .

• Discoveries (Di )n
i=1 are independent and Kn is a Poisson-Binomial:

Kn =
n∑

i=1

Di ∼ Pb{1, S(1; θ), . . . , S(n − 1; θ)}.

• Any T work as long as π1 = S(0; θ) = 1, S(n − 1; θ) > S(n; θ) and S(n; θ) → 0 as
n → ∞
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Sequential Discovery Framework

• The properties of the Poisson-Binomial allow to naturally fulfill our goals:
1 The in-sample trajectory estimator is the expectation of Kn:

E(Kn) =
n∑

i=1

S(i − 1; θ).

2 The out-of-sample estimator is a posterior expectation:

E(Km+n | Kn = k) = k +
m∑

j=1

S(j + n − 1; θ).

3 The latent variables control the asymptotic behavior:

Proposition
Under the latent structure setting, E(K∞) =

∑∞
i=1 S(i − 1; θ) is such that

E(T ) ≤ E(K∞) ≤ E(T ) + 1

with E(T ) =
∫ ∞

0 S(t; θ)dt. Moreover, K∞ = ∞ almost surely if and only if E(T ) = ∞.
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The log-logistic model

• Our choice for the shape of T is a three parameter log-logistic. If Tn
iid∼ ll(α, σ, ϕ),

then
πn+1 = S(n; α, σ, ϕ) = αϕn

αϕn + n1−σ

with α > 0, σ < 1 and ϕ ∈ (0, 1].

model parameters Kn behavior K∞ ssm counterpart
ll1 σ = 0, ϕ = 1 O(α log n) ∞ Dirichlet
ll2 σ ∈ (0, 1), ϕ = 1 O(nσ) ∞ ≈ Pitman–Yor
ll2 σ < 0, ϕ = 1 Kn converges ≈ E(T ) ≈ Dir-multinomial
ll3 ϕ < 1 Kn converges ≈ E(T ) -

• Estimation via constrained logistic regression using truncated normal priors

log πn+1

1 − πn+1
= log α − (1 − σ) log n + (log ϕ)n

(log α) ∼ N(0, 102), (σ − 1) ∼ N(−∞,0)(0, 102), (log ϕ) ∼ N(−∞,0)(0, 102).
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Results

Figure: Performance of the three-parameter log-logistic against other BNP sampling schemes
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Species richness and saturation in the Finnish fungal study

• For the 150 samples of fungal spores collected in Finland, we aim at calculating the
species richness K∞, the sample saturation Cn = Kn/K∞ and the additional number
of samples needed to get the desired saturation
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Inferring taxonomic placement from DNA barcoding aiding in discovery
of new taxa
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DNA barcoding

• DNA barcoding is the practice of placing DNA sequences within a Linnean taxonomy
(eg. phylum, class, order, genus, species). Insects are captured via Malaise traps
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Taxonomic trees may be incomplete!

• Libraries of labeled DNA (reference libraries) are often incomplete. For example, many
species do not have a reference barcode or are still unknown to science
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• When doing classification, we also need to account for the potential novel branches.
We do this by relying again on species sampling models
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Overview of BayesANT

• The taxonomic library of L levels is Dn = (Xi , Yi )n
i=1, where Yi are DNA sequences

and Xi = (Xi,1, ..., Xi,L) their annotations, such as

Xi,1 = “Insecta”, Xi,2 = “Diptera”, Xi,3 = “Tephritidae”, etc.

• Given Dn = (Xi , Yi )n
i=1 and a new DNA sequence Yn+1, we classify the corresponding

taxonomic labels Xn+1 as

p(Xn+1 | Yn+1, Dn) ∝ p(Xn+1 | X(n))︸ ︷︷ ︸
species sampling prior

× p(Y(n+1) | X(n+1))︸ ︷︷ ︸
DNA sequence likelihood

,

where X(n+1) = (Xi )n+1
i=1 and Y(n+1) = (Yi )n+1

i=1 .

• We call our method BayesANT - Bayesian nonparametric taxonomic classifier
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The model in details

• Taxonomic prior: enriched Pitman–Yor process across L levels

(Xn+1,ℓ | Xn+1,ℓ−1 = x , X(n)
·,ℓ ) =

{
“new” w.p. {αℓ + σℓK(x)}/{αℓ + n(x)},

X ∗
i,ℓ w.p. {n(X ∗

i,ℓ) − σℓ}/{αℓ + n(x)},

where X(n)
·,ℓ = (Xi,ℓ)n

i=1 and where n(x) and K(x) are the number of sequences and the
distinct nodes linked to x .

• DNA likelihood: call θxL the leaf-specific parameters and K a generic kernel. Then,

(Yi | Xi = (x1, . . . , xL), θxL ) ind∼ K(y ; θxL )

• If the sequences are globally aligned of the same length p, namely Yi = (Yij)p
j=1 with

Yij ∈ {A, C, G, T}, we assume a product-multinomial kernel

K(y ; θxL ) =
p∏

j=1

∏
g∈{A,C,G,T}

θ
1{yj =g}
xL,j,g ,

θxL,j ∼ Dir(ξxL,j,A,. . . ,ξvL,j,T)
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One-step-ahead prediction

• The prior probabilities of a future taxonomic label are obtained via chain rule

P(Xn+1 = x | X(n)) = P(Xn+1,1 = x1 | X(n))
L∏

ℓ=2

P(Xn+1,ℓ = xℓ | Xn+1,ℓ−1 = xℓ−1, X(n))

• The resulting one-step ahead prediction rule for the taxonomic labels X(n+1) becomes

P(Xn+1 = x | Yn+1, X(n)) ∝ P(Xn+1 = x | X(n))
∫

K(Yn+1; θxL )p(θxL | Dn)dθxL ,

where p(θxL | Dn) = p(θxL ) if xL is “new”

• We tune the hyperparameters ξx via method of moments, and we account for model
misspecification by recalibrating the probabilities, raising them to a power ρ ∈ (0, 1)

• Classification rule: iteratively select the taxon having the highest probability given the
previously selected branch so that a meaningful taxonomic structure is preserved.
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The FinBOL library and classification performance

• The FinBOL library Roslin et al. (2022) contains 34624 labeled across seven levels:
Class, Order, Family, Subfamily, Tribe, Genus, Species - 10985 distinct Species.
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Conclusions
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Concluding remarks

• Species sampling priors offer a rich framework to model ecological problems, from
community detection to species richness estimation

• To facilitate use, all methods are made available in R packages:
1 ConjugateDP to sample from the Stirling-gamma
2 BNPvegan to estimate the sequential discovery model
3 BayesANT to predict DNA sequence

• We hope that these will prove useful in the years to come!
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Next steps

• In the Stirling-gamma process, the we have K∞ < ∞ under a limiting argument. We
can draw a parallel with mixtures-of-finite-mixture, i.e. mixture models with a prior
on the number of components (Miller and Harrison, 2018)

• The sequential discovery framework deals with each location separately. We can
extend the framework to model abundance data from multiple location, in the same
spirit of indian buffet and feature sampling models (Griffiths and Ghahramani, 2011;
Battiston et al., 2018; Masoero et al., 2021)

• There are many ways in which BayesANT can be extended. For example, we can
choose a more flexible kernel. However, the general consensus is that we need better
training libraries
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Thank you!
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