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quelle persone con le quali ho condiviso di più noie, paure, gioie, dolori e tanta, tantissima

ansia pre-esame, a cominciare da Claudia Marangon. Da Dead Or Alive di Tom Cruise

in Rock of Ages a My Life is Going On de La Casa de Papel, dagli Avengers a Game

of Thrones, da Diritto Privato a Macroeconomics, sempre insieme a tirare fuori l’uno il

peggio dell’altro (o il meglio, a seconda dei punti di vista). Ti voglio bene. E poi ancora

grazia a Leonardo D’Amico, Ludovica Ciasullo, Valentina Santeusanio, Chiara Gardenghi,

Francesco Fabbri, Federica Ricci, Andrew Funk, Francesca Montrasio, Leonardo Stiz e

Edoardo Cogliati. Grazie anche e soprattutto ai miei compagni d’ufficio, cioè Vincenzo
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Two roads diverged in a yellow wood,

And sorry I could not travel both

And be one traveler, long I stood

And looked down one as far as I could

To where it bent in the undergrowth;

Then took the other, as just as fair,

And having perhaps the better claim,

Because it was grassy and wanted wear;

Though as for that the passing there

Had worn them really about the same,

And both that morning equally lay

In leaves no step had trodden black.

Oh, I kept the first for another day!

Yet knowing how way leads on to way,

I doubted if I should ever come back.

I shall be telling this with a sigh

Somewhere ages and ages hence:

Two roads diverged in a wood, and I -

I took the one less traveled by,

And that has made all the difference.

The Road Not Taken (1916)

Robert Frost

1 Introduction

In 1916, Robert Frost published one of his most famous poems, titled The Road Not Taken

(Frost, 1916). It describes a man (the poet) in front of a yellow wood, who has to decide

which road to take between two diverging ones. Even though he tries to look as further as

possible, he cannot see where each of the two separate paths would eventually lead him.

He then chooses to take one, and while hoping one day to return to that same wood and

make a different choice, he doubts he will ever be able to come back: he had chosen a

path and that has made all the difference.

It is known that Frost wrote this poem to gently poke his friend Edward Thomas, who

would constantly regret not having taken a different road during his long walks with the

poet in the english countryside. And yet, this apparently easy choice of whether to take
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the left or the right path in a wood becomes a powerful metaphor for life itself. Seventeen

years later, interestingly, William R. Thompson published an article on Biometrika, titled

On the likelihood that one unknown probability exceeds another in view of the evidence

of two samples (Thompson, 1933). The paper proposes a treatment allocation method

which adapts the probability of assigning each treatment to a group of individuals based

on its previously observed rates of success and failure. In other words, he suggested

a sampling rule, which will later inherit his name (the so called Thompson Sampling):

as the probability of success of a treatment in spite of the other increases, then the

same treatment should be applied to a larger and larger fraction of individuals. This

intuitive and yet powerful heuristic allows for a reduction of the regret associated to the

assignment choice (eg. apply treatment 1 to a patient when treatment 2 would have

worked) as the experiment proceeds over time. It almost seems that Thompson and

Frost indirectly shared the same desire to learn which road was “best”. However, the

scientist attempts to propose a first solution to such a dilemma: keep on adjusting your

expectations based on what you have observed in the past, and then follow the road that

has a higher probability of ending wherever you believe to be optimal according to such

expectations. Even though life is unpredictable (and, unfortunately, one), this should

work as a rule of thumb to minimize the regret of the possible choices one can make,

especially if such choices are irreversible. If the poet and his friend had known and had

applied the theory behind bandit algorithms to their leisurely strolls, The Road Not Taken

would have probably never seen the light as we know it, and humanity would have missed

one of the most famous poems of all time.

While hinted in Thompson (1933), bandit algorithms1 where first formally introduced

by Bush and Mosteller (1953). The two researchers carried on two separate repeated

experiments on mice and on humans to understand their learning behavior. In particular,

some mice were put at the bottom of a T-shaped maze, and had to decide whether to

go left or right to find food. In particular, food showed up at each endpoint of the T

with a different fixed probability, so that mice had to estimate which direction was more

1 Often referred as Multi-armed bandit algorithms in the literature.
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likely to deliver their supper. Similarly, the researchers placed individuals in front of a

specially designed slot machine endowed with two different arms. To echo the nickname

of the classical Las Vegas slot machine (the one-armed “bandit” that steals your money),

such a device was endearingly called “two-armed bandit”. As in the T maze, each arm of

the slot generated a positive reward with a certain probability when pulled, such that one

had a higher rate of success than the other. After several trials of exploration, eventually

every individual in the experiment understood which arm was the most rewarding one,

and kept on pulling it for the remaining trials.

Nowadays, this simple framework can be extended to a variety of situations (e.g. rec-

ommender systems, online advertising and production choices) where the pool of arms

among which to chose is potentially so huge and the available data are so immense that

it becomes almost necessary to have automatic optimization methods at hand. For this

reason, the literature on bandit algorithms is growing at an exponential rate (Lattimore

and Szepesvari, 2018), thanks to the increasing computational capacity of modern com-

puters2. This should come as no surprise to the business educated readers: testing and

updating new marketing strategies is an absolute must for every company that wishes

to sustain a desirable level of profitability over time. However, these policies need to be

carefully designed; abrupt changes in the product features, untested modifications of the

website front page or even ads not targeted to a specific subgroup of the customer base

may exibith undetected high opportunity costs. In addition, developing efficient market-

ing solutions requires a huge amount of time and resources, to the point that companies

may often decide to stick to the status quo and opt for more secure and well-established

policies. This trade-off is also referred as the “exploration-exploitation” dilemma (Sutton

and Barto, 1998). If exploiting the “best” available option is less costly and generates a

higher profit in the short run, changes in consumers’ taste or strengthening competitors

may harm the effectiveness of such policy in the long run. On the other hand, exploring

new solutions increases the regret in the short run, but it is necessary to maintain high

2 Google scholar reports less then 1000 paper at the voice “bandit algorithm” for the period 2001-2005,
2700 for the period 2006-2010 and 7000 in 2011-2015 and from 2016 to today the number of papers
published is around 5600.
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margins later in time. Ideally, the most effective way to conduct a business is to strongly

focus on exploitation, but still leave enough room for the exploration of new options. Ban-

dit algorithms are, as of today, the best solution to the exploration-exploitation dilemma.

As Whittle (1988) claims, bandit problems embody in essential form a conflict evident in

all human actions: information versus immediate payoff. Their main advantage is that

they are able to efficiently process information even when the available options among

which to choose are large in number or deep in complexity. Moreover, they run automat-

ically, thus allowing businessmen to save a great deal of time and resources that would

otherwise be spent in the decision process.

This thesis has two main objectives. First, it introduces and reviews the main tech-

niques that, over the years, have shaped the bandit literature. In particular, it focuses

on those methodologies that have been fundamental for the overall development of the

theory and its subsequent application. In doing so, we lay the fundamental focus on the

case of the K-armed stochastic Bernoulli bandit. This choice is in line with the litera-

ture itself, for the simple reason that the majority of applications of bandit algorithms

deals with binary distributed rewards (clicked - not clicked, bought - not bought, and so

on). To allow for mathematical simplicity and aid a better intuition, we assume that the

probability associated to the reward of every arm available in the pool is invariant over

time. Dropping such an assumption will be the object of a future research work. Further-

more, to ensure a proper performance comparison, we centre our evaluation metric over

the concept of regret, that is, the cumulative loss that is observed when the algorithm

chooses a sub-optimal option. In particular, we compare all the algorithms by looking at

the upper bound of their overall regret (whenever this is mathematically tractable), and

by assessing at the average trend of the per-period regret achieved by each strategy under

different simulated environments. Second, and most importantly, it expands the current

literature on Bayesian bandit algorithms by applying the novel conjugacy property of

the probit regression in Durante (2019) to the Fractional Factorial Thompson Sampling

introduced by Scott (2010). In particular, if a normal prior is set over the parameters

of the probit regression, the resulting posterior follows a unified skew-normal distribu-
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tion (Arellano-Valle and Azzalini, 2006; Azzalini and Capitanio, 2014). Such a conjugacy

property has, however, certain sampling issues which make its practical application im-

possible whenever the number of observations becomes high. To solve this problem, we

present an resampling method based on a Sequential Monte Carlo technique.

The work is structured as follows: Section 2 frames the analysis by briefly introducing

the bandit environment; Section 3 treats the fundamental frequentist strategies: the ε-

greedy, the Softmax, and the UCB family; Section 4 goes back to Thompson idea and

tackles the bandit environment from a Bayesian point of view. Section 5 presents our

advances in the Fractional Factorial Thompson Sampling. Finally, Section 6 concludes3.

3 All the Python scripts to produce the pictures and the simulations in this thesis are available at the
following GitHub repository: https://github.com/alessandrozito/Bandit_Algorithms.git
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2 The Bandit Environment

A bandit problem is a sequential game between a learner and an environment (Lattimore

and Szepesvari, 2018). The game is played T P N` rounds, where T is the so called

horizon, and At is the set of actions the learner can take at every trial t ď T . In the

bandit literature, At is also referred as the set of arms the player can pull at t.4 In

general, the pool is invariant over time, that is At “ A “ t1 . . . Ku @t P t1, . . . , T u.

Moreover, the general case assumes that K ă 8 (i.e. the number of arms is finite),

even though there exists an efficient version of the bandit problem with infinite arms

(Berry et al., 1997). We denote the generic element of A by a (an abbreviation for

“arm”). At any given round t, the learner chooses an arm at P A and observes both an

outcome yt P Υ and an associated reward rat,t ” rpat, ytq, where r : A ˆ Υ Ñ R is the

reward function. Note that the choice of arm at depends exclusively on the choice-reward

history Ht´1 “ tpa1, ra1,1q, . . . , pat´1, rat´1,t´1qu. In other words, the learner cannot borrow

information from the future, but decides how to proceed based on past observations only.

In particular, he chooses action at based on a policy function π : Ht´1 Ñ A, and learns

the associated outcome according to the environment map Z : Ht´1 ˆ A Ñ Υ. The set

of possible policies π P Π is called competitor class. The typical objective of the learner

is to choose the sequence of arm pulls that lead him to the highest cumulative reward
řT
t“1 rat,t. Now, if the learner knew the environment function Z, the optimal sequence of

actions would be easy to find. However, the fundamental challenge of the bandit problem

is that the environment is unknown the player. All the learner knows is that Z P E ,

where E is called environment class. In general, the performance of a policy π given

E is measured in terms of regret, that is, broadly speaking, the difference between the

total expected cumulative reward obtained by applying policy π and the total expected

cumulative reward that comes from the application of the “best” policy π˚ P Π.

In line with the majority of the literature on bandit algorithms, our environment of

reference is a stochastic Bernoulli bandit, whose characteristics are detailed in definitions

1 and 2.

4 Throughout the review, I will use the term arm, action and choice as synonyms.
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Definition 1. A K-armed stochastic bandit is a tuple of distributions ν “ pP1, . . . , PKq

such that @t P t1, . . . , T u:

(i) rat,t | tHt´1, atu „ Pat

(ii) @a P t1, . . . , Ku, Ppat “ a|Ht´1q “ ξtpHt´1q, where ξ1, ξ2, . . . is a sequence of func-

tions ξt : Ht´1 Ñ r0, 1s

In other words, a stochastic bandit is an environment where the rewards associated to

each arm have a distribution that is independent of past observations and fixed over time

(condition piq) and the probability of selecting arm a at t does not depend on future values

(condition piiq). The mean and variance associated to the reward of the arm selected at

time t are given by:

mean: µat “

ż 8

´8

rat,tdPatprat,tq

variance: σ2
at “

ż 8

´8

prat,t ´ µatq
2dPatprat,tq.

If in particular the rewards follow a Bernoulli distribution, then the environment is termed

stochastic Bernoulli bandit.

Definition 2. A K-armed stochastic bandit ν “ pPaq
K
a“1 is a stochastic Bernoulli bandit

if and only if rat,t „ Bernoullipµatq with µat P r0, 1s @t P t1, . . . , T u and @at P t1, . . . , Ku

In other words, stochastic Bernoulli bandits are characterized by a sequence pµaq
K
a“1

where each component is the probability of arm a to return a reward equal to 1. Note

that these probabilities remain constant over time for each arm. Moreover, the meaning

of rat,t “ 1 varies depending on the application the bandit algorithm. For example, it can

represent a click on an online banner, or a conversion registered by a website after the

selection of arm at. In particular, in the first case at can capture the color of the banner,

while in the second it can represent the choice of a particular font for the website’s main

page. As these probabilities are unknown, they need to be estimated. However, the

purpose of the algorithm is not the one of precisely estimating the probability of success
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of every arm, but rather the one of understanding which of them leads to the highest

expected reward, or, equivalently, to the lowest regret. In particular, we denote by

n̂aptq :“
t´1
ÿ

s“1

1tas “ au (2.1)

the number of times arm a has been selected up to time t, and by

µ̂aptq :“
1

n̂aptq

t´1
ÿ

s“1

ras,s1tas “ au (2.2)

the average observed reward for every arm a up to t. Note that the summation goes from

1 to t´ 1. This is a pure choice of notation: whenever we fix a generic time period t, we

mean that the algorithm has collected information for the first t ´ 1 trials, and needs to

choose which arm to pull at t. For example, if t “ 1, n̂ap1q “ 0 for every arm, and no

estimate for µa has been computed yet.

Call µ˚ “ arg maxaPA µa the highest mean, and a˚ the corresponding arm. The regret

associated to policy π “ ta1, . . . , aT u in bandit ν is defined as

RT pπ, νq “ Tµ˚ ´ E

«

T
ÿ

t“1

rat,t

ff

, (2.3)

while the sub-optimality gap of action a with respect to the best arm a˚ is defined as

@a P A : ∆a˚,a “ µ˚ ´ µa. (2.4)

Note that, by definition, ∆a˚,a˚ “ 0. But then, the following lemma holds:

Lemma 1. Regret Decomposition Lemma - For any policy π and K-armed stochastic

bandit environment ν with horizon T, the regret can be written as

RT pν, πq “
K
ÿ

a“1

∆a˚,aErn̂apT ` 1qs, (2.5)

where n̂apT`1q indicates the number of times arm a has been selected once the experiment

is concluded.
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Finally, we define the per-period regret of selecting arm at at any given time t as

ρa˚,at “ µ˚ ´ µat , (2.6)

with ρa˚,a˚ “ 0 by definition. The link between equation (2.4) and (2.6) is rather subtle.

While ∆a˚,a refers to all arms and is invariant over time, ρa˚,at instead is specific to a

time period t where the optimal arm is a˚ and the chosen arm is at. In other words, the

per-period regret can be rewritten as

ρa˚,at “
K
ÿ

a“1

∆a˚,a1tat “ au. (2.7)

Note that we focus our analysis on the concept of regret rather then on the per-period

reward or on the cumulative reward. While the minimization of the former mirrors a

maximization of the latter two, the regret is a better term of comparison for the efficiency

of an algorithm5.

Indeed, much of the literature on bandit algorithms is concerned with the evaluation of

the dependency between either the regret or the per-period regret at time t and t itself.

As a rule of thumb, if the cumulative regret increases linearly with time or the per-period

regret does not eventually become null, we should change our sequential allocation policy,

because we keep on selecting sub-optimal arms even when the best arm has been spotted

with enough confidence. Ideally, an upper bound on the regret that evolves according

to a logarithmic scale should be preferred. Lai and Robbins (1985) introduced a primer

result on the asymptotic bound of the regret RT for a generic allocation policy, given than

certain mild conditions are satisfied. In particular, let

DKLpPat || P
˚
q “

ż 8

´8

patprat,tq log
´patprat,tq

p˚prat,tq

¯

drat,t P r0,8s (2.8)

5 Per-period rewards depend on the distribution from which the responses of each arm are generated.
This means that the value to which they converge depends on the specific simulation. On the other
hand, a per-period regret that is not equal or close to zero always indicate that the algorithm is selecting
the wrong arm irrespectively of the bandit environment. In other words, the per-period regret is an
absolute measure of performance.
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denote the Kullback-Leibler divergence between the distribution function associated to

the reward of arm at, Pat , and the one associated to the best arm, P ˚ (i.e. the one for

which µat “ µ˚). In addition, assume that

@at P A s.t. µ˚ ą µat : 0 ă DKLpPat || P
˚
q ă 8 (2.9)

and that

@µi, µj, i, j P t1, . . . , Ku : µi Ñ µj ùñ DKLpPi || P
˚
q Ñ DKLpPj || P

˚
q. (2.10)

Then, the the following theorem holds:

Theorem 1. Lai and Robbins (1985) - Let DKLpPa || P
˚q satisfy conditions (2.9) and (2.10).

If

@α ą 0 : lim
TÑ8

RT

Tα
“ 0, (2.11)

then for every ν such that the success probabilities pµaqaPA are not all equal,

lim inf
TÑ8

RT

log T
ě

ÿ

a:µaăµ˚

µ˚ ´ µa
DKLpPa || P ˚q

(2.12)

In other words, RT “ Ωplog T q6, which means that the regret attains an asymptotic

lower bound that is at least on the logarithmic scale. An algorithm solves the multi-

armed bandit environment if RT “ Oplog T q (Kuleshov and Precup, 2000). In this case,

the algorithm is said to be asymptotically optimal. In the following sections, we will

introduce a series of algorithms that attain this upper bound, both asymptotically and

6 For the rest of the paper, we adopt the Bachmann-Landau notation to indicate limiting properties of
function. In particular, given the functions f, g : NÑ r0,8q:

fpnq “ Opgpnqq ðñ lim sup
nÑ8

fpnq

gpnq
ă 8

fpnq “ Ωpgpnqq ðñ lim sup
nÑ8

fpnq

gpnq
ą 0

fpnq “ opgpnqq ðñ lim
nÑ8

fpnq

gpnq
“ 0

fpnq “ Θpgpnqq ðñ fpnq “ Opgpnqq and fpnq “ Ωpgpnqq
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not.
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3 Frequentist Strategies

This section presents the fundamental algorithms that have shaped the bandit theory

from a frequentist point of view: the greedy strategies and the upper confidence bound

strategies. In line with the existing literature, much of the attention is dedicated to the

comparison of the performance of the algorithms in terms of per-period regret in a sim-

ulated environment. As this thesis is fundamentally focused on extending the Thompson

Sampling literature, this section serves mainly as an introduction to the world of ban-

dits, rather than a detailed analysis of the most recent improvements of their frequentist

literature. The chapter is divided as follows. Section 3.1 deals with the most common

greedy strategies: ε-greedy and Softmax exploration. Section 3.2 introduces the concept

of sub-gaussian random variables and uses it to explain the concepts behind the UCB

strategies.

3.1 Greedy strategies

The aim of every bandit algorithm is to understand which arm is the best among the ones

in A as quickly as possible. However, trying them all repeatedly before deciding may

lead us to play sub-optimal arms more than it is necessary. On the other hand, complete

exploitation (i.e. keep on exploiting the arm with the highest estimated reward at t) may

prevent us from discovering new and better arms. Every policy π that exploits the arm

with the highest estimated reward at time t is called a greedy strategy. While the aim of

a greedy strategy is to maximize the immediate reward, it proves sub-optimal in the long

run (Sutton and Barto, 1998): dull exploitation does not monitor possible changes of the

bandit environment (like a sudden variation of the success probabilities of each arm).

The first solution to solve the inefficiencies of such a strategy is to introduce an element

of randomness in the model for the arm selection: at the beginning of the experiment, fix

a probability ε of exploring one arm in A at random. Then, at every trial, the algorithm

takes the greedy action (i.e. pull the arms with the highest estimated reward up to t,

with ties broken arbitrarily) with a probability of 1´ ε, and chooses a random arm with

probability ε. This algorithm is called ε-greedy (Sutton and Barto, 1998). Algorithm 1
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reports the technical details of the ε-greedy applied to the case of a K-armed stochastic

Bernoulli bandit.

Algorithm 1 ε-greedy algorithm with Bernoulli rewards

1: Input: ε P r0, 1s Ź Set the degree of exploration
2: Input: pn̂ap1qq

K
a“1 Ð 0 P RK Ź Pulls counter

3: Input: pµ̂ap1qq
K
a“1 Ð 0 P RK Ź Vector of estimated means

4: for t “ 1, 2, 3 . . . , T do
5: Draw u „ Up0, 1q
6: if u ą ε then
7: Select arm at “ arg maxaPA µ̂aptq Ź Exploit w.p. 1´ ε
8: else
9: Select arm at at random from A Ź Explore w.p. ε

10: Observe reward rat,t Ź rat,t „ Bernoullipµatq
11: n̂atpt` 1q Ð n̂atptq ` 1
12: µ̂atpt` 1q Ð rpn̂atpt` 1q ´ 1qµ̂atptq ` rat,ts{n̂atpt` 1q Ź Update

13: end for

The mechanism is rather easy: at each time period t, it draws a random number

u from a uniform distribution between 0 and 1, and compares it with ε. If ε ă u,

exploit the best arm (i.e. the one with the highest µ̂aptq). Otherwise, explore one arm

at random.7 Note that if the algorithm explores, then every arm in A has an equal

probability of being selected. This means that it can happen that the learner takes the

greedy action even during exploration. After the toss and the selection of arm at, the

algorithm observes the associated reward rat,t. Following our assumptions, such a reward

follows a Bernoulli distribution which returns a success (a 1) with unknown probability

µat , and a failure (a 0) otherwise. This allows to update the estimate for µat itself

(that is, µ̂atptq), thus increasing the amount of information the algorithm has over the

environment. In particular, the method used here for updating the value of an arm is the

so called action-value method, which estimates the mean reward of each arm by averaging

the number of successes over the number of pulls the arm has received. This method gives

higher weight to the observations in the first trial periods, and progressively lower weight

7 This is equivalent to selecting the best arm with probability 1´ ε and exploring with probability ε. To
see this, let Y „ Bernoullipεq and u „ Up0, 1q. But then, it holds that

Ppu ď εq “

ż ε

´8

1r0;1spuqdu “
”

u
ıε

0
“ ε “ PpY “ 1q
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to new observations as t increases. Note that this updating rule is efficient if and only if

pµaq
K
a“1 is invariant over time. If this assumption drops, the algorithm’s ability to monitor

potential changes in the environment decreases as the experiment proceeds. Then, the

learner should consider other updating rules to avoid the risk of getting stuck to sub-

optimal arms. More in general, the updating rule for the transition between t and t ` 1

for every arm a is given by:

µ̂apt` 1q Ð

$

’

’

&

’

’

%

µ̂aptq ` αpt, n̂apt` 1qq ˆ rrat,t ´ µ̂aptq
‰

if at “ a

µ̂aptq otherwise

where αpt, n̂apt` 1qq measures the weight to give at time t to the reward of a after

a has been pulled n̂apt ` 1q times8. Notice that only the estimated mean of the arm

selected at t receives the update, whereas the values for all the other arms a ‰ at remain

equal. In particular, the action-values method sets αpt, n̂apt` 1qq “ 1{n̂apt ` 1q. If in-

stead we suspect that the probability of success of an arm can vary over time, we could

set αpt, n̂apt` 1qq “ α P r0, 1s @t. Even though this favors exploration over exploitation,

the α level needs to be tuned properly, thus adding extra computational effort to the

problem. Moreover, a high α may significantly decrease the performance of the algorithm

irrespective of the environment.

Figure 1 plots the average per-period regret of algorithm 1 over 500 simulations with

an horizon T “ 1000 for five different values of ε. In particular, the left panel simulates

over a 10 arms test-bed, while the right one over a 30 one. In both cases, the probability

of success of each arm have been randomly drawn from a Betap1, 6q at the beginning

of each simulation, so to average the results across 500 different bandits environments.

Two important aspects are worth mentioning. First, it is clear how different degrees of

exploration lead to different levels of regret in the long run. In particular, as ε increases,

so does the probability of pulling sub-optimal arms, irrespective of whether the algorithm

has correctly identified the best arm in the environment. On the other hand, if ε is too low,

8 The t` 1 component comes from the fact that at time t arm a has been selected.
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Figure 1: Average per-period regret of the ε-greedy algorithm across 500 simulations and
varying ε in a 10-arms (left) and a 30-arms (right) stochastic Bernoulli bandit environ-
ment. Real success probabilities are randomly drawn from a Betap1, 6q at the beginning
of each simulation.

the regret becomes very high, because the algorithm has really low chances of exploring all

arms satisficingly. In other words, too much exploration and too much exploitation both

increase the frequency with which sub-optimal choices are pulled. Indeed, the optimal

level of exploration (i.e. the exact level of ε that minimizes the regret) is strictly dependent

on the environment and needs to be tuned if one wishes to implement algorithm 1 in a

real business application. Notice in particular that the performance of the algorithm

decreases as the size of the arm pool increases, even though an ε “ 0.1 achieves always

the best performance. The second fundamental aspect is that average per period regret

never quite goes to 0, but becomes stable after a certain time t depending on the size of ε.

This means that when the ε-greedy algorithm understands what arm is the best, it is still

enforced to explore sub-optimal arms. Moreover, the random design of the exploration

rule can be problematic as it assigns each arm an equal probability of being explored,

irrespective of its estimated success probability.

Ideally, we would like to have an algorithm that preserves the information collected on

the exploited arms, so that the exploration returns at least a minimum acceptable reward.

Rather than an haphzard exploration, what we might want is a more structured exploration

(White, 2013). These two order of problems can be easily solved by modifying algorithm 1

by either making ε decrease over time (the so called annealing ε-greedy, algorithm 2), or by
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selecting the arms according to a discrete probability distribution where the probability

of pulling arm a at t is proportional to the estimated success of a itself (the Softmax

algorithm, also referred as Boltzmann exploration).

Algorithm 2 Annealing ε-greedy algorithm with Bernoulli rewards

1: Input: pn̂ap1qq
K
a“1 Ð 0K Ź Pulls counter

2: Input: pµ̂ap1qq
K
a“1 Ð 0K Ź Vector of estimated means

3: for t “ 1, 2, 3 . . . , T do
4: εÐ gεptq Ź g1εptq ď 0, decreasing function over time
5: Perform steps 5-12 in algorithm 1

6: end for

The reasoning behind the annealing version of the ε-greedy is straightforward. During

the first trials, the exploration rate is set high so to get a rough estimate of how each

arm behaves when selected. Then, as t increases, ε decreases, which make the probability

of selecting sub-optimal arms quickly reaching zero as the experiment proceeds. Cesa-

Bianchi and Fischer (1998) proved that when

gεptq “ min

"

1,
cK

d2t

*

with d P p0,mina:µaăµ˚ ∆a˚,as and µa P r0, 1s for every a, the annealing ε-greedy selects a

sub-optimal arm with probability at most

c

d2t
` 2

´ c

d2
log

pt´ 1qd2
?
e

cK

¯´ cK

pt´ 1qd2
?
e

¯c{p5d2q

`
4e

d2

´ cK

pt´ 1qd2
?
e

¯c{2

(3.1)

for all t ě cK{d, with e indicating the Euler’s constant. The authors also point out that,

for c ą 5, the bound is of order c
d2t
` op1

t
q for t Ñ 8, while the second and third terms’

bounds are Op 1
t1`η
q for some η. Even though this is a strong and non asymptotic result

on the per-period regret, the exact calculation of this bound requires a prior knowledge

of both the range of µa and of ∆a˚,a. More in general, they proved that the instantaneous

regret bound on the finite-time multi-armed bandit problem in the case of both the ε-

greedy and the Softmax is, under moderate assumptions, of the form a` b log T ` log2 T ,

where a, b and c are constants that do not depend on T .

However, as one can easily notice, the annealing ε-greedy suffers from the same fun-
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damental problem as the simple ε-greedy does. Whenever it explores, every arm has an

equal probability of being selected irrespective of its reward history. The Softmax algo-

rithm (and its annealing version) elegantly solves this issue by choosing an arm at every

round using a random draw form the Boltzmann distribution. Let pµ̂aptqq
K
a“1 be the vector

of estimated means at time t. Then, each arm receives a pull with a probability given by:

ŵat “ Ppat “ aq “
eµ̂aptq{τ

řK
j“1 e

µ̂jptq{τ
(3.2)

where τ P r0,8q is a fixed parameter called temperature. The idea behind τ is pretty

simple: the closer it is to 0, the less the algorithm tends to explore. On the other hand,

a very high τ leads to a reduced exploitation rate.9 To see this, consider the case where

K “ 3 and µ̂1ptq ą µ̂jptq, j “ 2, 3. Then, the probability of selecting arm 1 at time t is

given by:

w̃1t “
eµ̂1ptq{τ

řK
j“1 e

µ̂jptq{τ

“
1

1` e
1
τ
pµ̂2ptq´µ̂1ptqq ` e

1
τ
pµ̂3ptq´µ̂1ptqq

,

which is equal to 1
3

if τ Ñ 8 (unweighted random exploration) and tends to 1 if τ Ñ 0

(pure exploitation). For values between p0,8q, arm 1 has higher chances of being pulled

the lower τ is. In the annealing version of the Softmax algorithm, τ starts high and

decreases over time, so to favor exploration during the first trials and exploitation in the

last ones. Algorithm 3 and 4 provide a detailed description of the Boltzmann exploration

with fixed and decreasing values for τ .

Figure 2 compares the simulated per-period regret of algorithms 1, 2, 3 and 4. As

in the case of figure 1, the simulation is carried over a 10 and a 30 arms test-bed, each

having a different probability of yielding rat,t “ 1 randomly drawn from a Betap1, 6q.

Again, the initial value of the regret is higher in the case of 30 arms, and decreases at

a similar pace. Few things are worth noticing. First, the relative performances of the

9 This behavior is similar the one displayed by the water particles as the temperature of the environment
varies. A low temperature makes the particles stable, while at high degrees they tend to move more
chaotically.
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Algorithm 3 Softmax algorithm with Bernoulli rewards

1: Input: τ ě 0 Ź Set the degree of exploration
2: Input: pn̂ap1qq

K
a“1 Ð 0 P RK Ź Pulls counter

3: Input: pµ̂ap1qq
K
a“1 Ð 0 P RK Ź Vector of estimated means

4: for t “ 1, 2, 3 . . . , T do
5: for all a P A do
6: ŵat Ð

eµ̂aptq{τ
řK
j“1 e

µ̂jptq{τ

7: end for
8: Select at P A from the probability distribution ŵt “ pŵatq

K
a“1

9: Observe reward rat,t Ź rat,t „ Bernoullipµatq
10: n̂atpt` 1q Ð n̂atptq ` 1
11: µ̂atpt` 1q Ð rpn̂atpt` 1q ´ 1qµ̂atptq ` rat,ts{n̂atpt` 1q Ź Update

12: end for

Algorithm 4 Annealing Softmax algorithm with Bernoulli rewards

1: Input: pn̂ap1qq
K
a“1 Ð 0 P RK Ź Pulls counter

2: Input: pµ̂ap1qq
K
a“1 Ð 0 P RK Ź Vector of estimated means

3: for t “ 1, 2, 3 . . . , T do
4: τ Ð gτ ptq Ź g1τ ptq ď 0, decreasing function over time
5: Perform steps 5-11 in algorithm 3

6: end for

algorithms are similar: the annealing strategies correctly identify the best arm faster

than the non annealing strategies. In particular, the worst algorithm in the long run is

the simple Softmax with τ “ 0.1, but in the short run (the first 200 trials on the left, 400

on the right), its performance is superior to the simple 0.1-greedy. However, after this

cutoff, the per-period regret of the Softmax becomes stationary. The reason is that, again,

once the algorithm has correctly estimated the rates of success of all the arms, it is still

forced to explore sub-optimal choices at a constant rate. Moreover, as the true success

probabilities are similar10, the corresponding selection probabilities will remain similar,

thus making the algorithm unable to properly exploit. Second, the potential inefficiencies

of the non-annealing algorithms are overcome once we set ε and τ to decrease over time.

This is especially true in the case of the annealing Softmax, where a decreasing τ ensures

that enough exploration takes place within the first trial so to justify pure exploitation in

later ones. Third, the per-period regret of the algorithms never quite goes to zero, as the

randomness of the selection leaves always some space for further exploration. In the next

10 The Betap1, 6q distribution has mean around 0.14 and variance 0.015.
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subsection, we analyze a class of algorithms which is purely deterministic and potentially

can overcome this problem.

Figure 2: Algorithm comparison: ε-greedy (ε “ 0.1), Softmax (τ “ 0.1), annealing ε-
greedy and annealing Softmax. Per-period regret is averaged over 500 simulations, with
T=1000. In the left panel, the simulations are carried over a 10 arms test-bed, while
on the right on a 30 arms. True means are drawn from a Betap1, 6q. In both annealing
algorithms, gεptq “ gτ ptq “ 1{

?
t for every t P t1, . . . , T u.

3.2 Upper Confidence Bound strategies

All the algorithms examined so far suffer from a fundamental issue: whether structured

(Softmax) or unstructured (ε-greedy), their explorative rules are still bounded to a certain

degree of randomness. This feature is a two-edged blade: on the one hand, it ensures that

certain degree of exploration will always be maintained, while on the other hand it has

a reduced control over the direction of such exploration, with a non-zero probability of

exploring the worst arms. Moreover, random exploration is always guillable to some

extent, as it can be easily fooled by a few negative experiences. In other words, the

algorithm can value an arm sub-optimal only because in the first few trials its associated

average reward has been low. Say for example that, in a 2-armed stochastic Bernoulli

bandit, arm 1 has a probability of success of 0.6, and arm 2 of 0.5. If both arms have

been pulled 3 times each, then the probability that the number of successes from arm

2 (the sub-optimal one) exceeds the ones from 1 is 0.254. Though low, there is a non

negligible chance that the algorithm exploits arm 1 for several trials in a row, with a
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subsequent increase of Rt. If the exploration parameters ε and τ decrease over time, there

is a non-zero probability to get stuck on a sub-optimal arm because the best one has

not received enough pulls. To tackle such an issue, we can opt for a fully deterministic

strategy, which pays an initial extra explorative cost by pulling all of the available arms,

and then allocates the subsequent pulls depending both on the number of times each arm

has been selected and on its respective rate of success. This ensures that, in the long run,

the algorithm correctly identifies the best arm with enough confidence.

In what follows, we introduce the most important class of frequentist deterministic

algorithms, commonly known as the Upper Confidence Bound class (UCB for short).

While there exist an increasing number of variants of the UCB, this section focuses on

the algorithms presented in Auer et al. (2002), which are the building blocks of such a

class. Before doing so, however, we need to review some important concentration results.

3.2.1 Sub-gaussian random variables

Following Bubeck and Cesa-Bianchi (2012), we phrase the analysis of the UCB bandit in

term of the concept of sub-gaussianity, that is

Definition 3. (Sub-gaussianity) - A random variable X with Er|X|s ă 8 is said to be

σ-sub-gaussian if @λ P R it holds that ErexptλpX ´ ErXsqus ď exptλ2σ2{2u.

Note in particular that, if X is σ-sub-gaussian and 0 ă σ ă η, then X is also η-sub-

gaussian.

Sub-gaussian random variables enjoy the following important inequality:

Theorem 2. If X is σ-sub-gaussian, then for any ε ě 0,

PpX ě εq ď exp
´

´
ε2

2σ2

¯

(3.3)

The proof follows the so called Cramer-Chernoff method, which consists of making the

inequality depend on a certain parameter that will later be properly tuned. In general,

this method is the key through which the literature proves all the regret bounds of the

UCB.
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Proof. Consider the following chain of inequalities for a certain λ P R:

PptX ´ ErXsu ě εq “ PpexpλtX ´ ErXsu ě exptλεuq

ď ErexpλtX ´ ErXsus{ exptλεu

ď exp
´λ2σ2

2
´ λε

¯

,

where the first inequality follows from Markov’s11 inequality and the second from the

definition of sub-gaussianity. Then, the last term can be minimized by setting λ “

ε{σ2

Moreover, it holds that

Lemma 2. Let X1 and X2 be two independent random variables such that X1 is σ1-sub-

gaussian and X2 is σ2-sub-gaussian. Then, X1 `X2 is
a

σ2
1 ` σ

2
2-sub-gaussian.

Now, forX1, . . . , Xn independent and σ-sub-gaussian, let µ “ ErXs and µ̂ “ 1
n

řn
i“1pXi´

µq, and pick a generic ε ě 0. Then, it holds that

Ppµ̂ ě µ` εq “ Pp
n
ÿ

i“1

pXi ´ µq ě nµ` nεq “ Pp
n
ÿ

i“1

Xi ě nεq ď exp
´

´
nε2

2σ2

¯

,

where the last inequality is a direct consequence of lemma 2, which implies that
řn
i“1Xi

is
?
nσ-sub-gaussian. In a similar fashion, it can be proved that

Ppµ̂ ě µ´ εq ď exp
´

´
nε2

2σ2

¯

Finally, if one fixes δ P r0, 1s as δ “ expp´ nε2

2σ2 q, then with probability at least 1 ´ δ it

holds that

µ ě µ̂`

c

2σ2 logp1{δq

n
. (3.4)

The result in equation (3.4) is at the core of the UCB bandit analysis.

11 Let X be a random variable with finite expectation. Then, @ε ě 0, it holds that

Pp|X| ě εq ď
Er|X|s
ε
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Sub-gaussianity is a property enjoyed by many random variables. In particular, Cesa-

Bianchi and Lugosi (2006) proved that Bernoulli distributed random variables are 1{2-

sub-gaussian. Exploiting such a result can significantly improve the performance of the

simple UCB algorithm, as we illustrate in the next subsection.

3.2.2 UCB1 and UCB-Tuned

The fundamental principle that regulates every UCB algorithm is the so called “optimism

in the face of uncertainty” (Lai and Robbins, 1985), which states that a decision maker

should act as if the environment is as nice as plausibly possible given the data collected

prior to the decision. In other words, if the learner observes that the average reward of

an arm is low, he admits that such a bad performance can be caused by uncertainty in

the estimate. As a consequence, he believes that the true rates of success are higher than

those observed, and he is willing to adjust his beliefs only when he has reached a satisfying

level of confidence over those same rates. To do so, he balances between exploration and

exploitation by either pulling the observed highest rewarding arm, or trying those for

which the estimates are more uncertain due to a low number of pulls. In particular, at

the beginning of every trial t, the algorithm assigns a bonus to each arm, which is inversely

related to the number of pulls that specific arm has received up to t. Then, it greedily

selects the arm which has the highest Upper Confidence Bound, computed by summing

the observed average reward at t and the bonus itself. To define this bonus, we just look

back at equation (3.4), which ensures that, for every δ P p0, 1q, for every arm a P A and

every time t,

P

˜

µa ě µ̂aptq
loomoon

estimated mean at t

`

d

2σ2 logp1{δq

n̂aptq
looooooomooooooon

bonus

¸

ď δ. (3.5)

Algorithm 5 reports the steps to implement the easiest version of the UCB algorithm

family.

In the case of Bernoulli rewards, it holds that σ “ 1{2. Nevertheless, the algorithm

behaves well under σ “ 1 as well.12 Auer et al. (2002) first tested algorithm 5 on a 10-arm

12 Bubeck and Cesa-Bianchi (2012) introduce a further, and more efficient, UCB algorithm in the case
of independent Bernoulli distributed rewards, known as the KL-UCB (where KL stands for Kullback-
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Algorithm 5 UCB algorithm with generic σ-sub-gaussian reward distribution

1: Input: δ P p0, 1q Ź Set the width of the confidence bound
2: Input: pn̂ap1qq

K
a“1 Ð 0 P RK Ź Pulls counter

3: Input: pµ̂ap1qq
K
a“1 Ð 0 P RK Ź Vector of estimated means

4: for t “ 1, 2, 3 . . . , T do
5: if Da P A such that n̂aptq “ 0 then
6: Select at “ a Ź Pull each arm at least one time
7: else
8: for all a P A do

9: bonusa,t Ð
b

2σ2 logp1{δq
n̂aptq

10: UCBa,t Ð µ̂aptq ` bonusa,t

11: end for
12: Select arm at “ arg maxaPA UCBa,t

13: Observe reward rat,t Ź rat,t „ Pat σ-sub-gaussian
14: n̂atpt` 1q Ð n̂atptq ` 1
15: µ̂atpt` 1q Ð rpn̂atpt` 1q ´ 1qµ̂atptq ` rat,ts{n̂atpt` 1q Ź Update

16: end for

stochastic Bernoulli bandit by setting σ “ 1 and δ “ 1{t. Under such a formulation, the

algorithm is commonly referred as UCB1. In particular, they introduced the following

theorem for the regret bound:

Theorem 3. (Theorem 1 in Auer et al. (2002)) - Let ν be a K-armed stochastic bandit

environment where Pa has support in r0, 1s @a. Then, for every time t P t1, . . . , T u, the

regret for the UCB1 algorithm satisfies

Rt ď

„

8
ÿ

a:µaăµ
˚

´ log t

∆a˚,a

¯



`

´

1`
π2

3

¯

K
ÿ

a“1

∆a˚,a, (3.6)

where pµaq
K
a“1 are the usual means of the rewards distributed according to pPaq

K
a“1.

Note that the UCB1 algorithm is optimal, as its regret satisfies RT “ Oplog T q. Other

versions of the above bound for cases when δ “ 1{t2 and generic δ can be found in Bubeck

and Cesa-Bianchi (2012) and Lattimore and Szepesvari (2018). All these bounds satisfy

the optimality condition above. Auer et al. (2002) further improved on such an algorithm

by including the rewards observed variances in the computation of the bonus. This version

of algorithm 5 is called UCB-Tuned. In particular, at every time t, the UCB-Tuned selects

Leibler). For the purpose of this analysis, it is sufficient to focus on UCB1 and UCB-tuned.
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at based on

at “ arg max
a

˜

µ̂aptq `

d

log t

n̂aptq
min

 1

4
, Vapn̂aptqq

(

¸

,

where

Vapn̂aptqq “
1

n̂aptq

n̂aptq
ÿ

s“1

r2
a,s ´ µ̂

2
aptq `

d

2 log t

n̂aptq
.

Algorithm 6 reports the technicalities of the UCB-Tuned. While the authors could not

provide a proper regret bound for this version of the algorithm, Audibert et al. (2009)

extensively analyzed the long run properties of variance-enhanced UCB algorithms similar

to the UCB-Tuned.

Algorithm 6 UCB-Tuned as in Auer et al. (2002)

1: Substitute steps 8-11 from algorithm 5 with the following:
2: for all a P A do
3: Vapn̂aptqq Ð

1
n̂aptq

řn̂aptq
s“1 r2

a,s ´ µ̂aptq
2 `

b

2 log t
n̂aptq

4: bonusa,t Ð
b

logp1{δq
n̂aptq

ˆmin
 

1
4
, Vapn̂aptqq

(

5: UCBa,t Ð µ̂aptq ` bonusa,t

6: end for

Let’s now take a step back and explain the advantages of algorithm 5 and 6 as opposed

to the other algorithms. As already stated above, all UCB strategies drive the exploration

towards the arms that have either been explored less frequently than the others, or that

have a high estimated probability of success (up to a certain level of confidence). These

rules are purely deterministic, and allow for a lower level of explorative uncertainty than

other mechanisms which include a random component in the selection. In particular, the

UCB strategies presented here ensure that every arm is explored at least one time at the

beginning of the experiment (otherwise, the computation of the bound is impossible),

and later re-explored whenever the algorithm deems it necessary. It can happen instead

that both the Softmax and the annealing ε-greedy forget to explore a certain arm, or do

not explore it enough to be sure that it is indeed sub-optimal. In particular, the upper

confidence bound of a sub-optimal arm may exceed the bound of the best arm for at least

two reasons. First, in the case when δ “ 1{t, if the arm has been explored less frequently

than the other arms at time t, then the bound increases, and so does the probability of
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exploring that particular arm. Second, if the sub-optimal arm has returned more successes

than it should have, its estimated mean is going to be high, and the algorithm explores it

further to collect more information on its actual mean. But then, this type of structured

exploration ensures that each arm is explored enough times so to understand with enough

confidence which one is best according to the pre-established metric. However, such a

reasoning has its benefits only when the UCB algorithm is run on a rather small set of

arms, or when the horizon is sufficiently large. In the case of a large number of arms, the

initial cost of exploring all arms (step 5-6 of algorithm 5) may never quite be recovered

in later exploitation periods.

Figure 3: Average per-period regret over a 500 simulation of five algorithms: UCB1 as
in Auer et al. (2002), UCB1 with σ “ 1{2 to exploit the sub-gaussianity of the Bernoulli
distribution, UCB-Tuned, annealing ε-greedy and annealing Softmax. As above, T=1000
and success probabilities are drawn from a Betap1, 6q in both panels.

Figure 3 plots the average regret obtained by the UCB algorithms described so far over

500 simulations, and compares the performances with the other algorithms. As above,

means come from a Betap1, 6q. The following facts are worth noticing. First, in both

cases the UCB-Tuned achieves a better performance than the other two UCB algorithms.

This could have easily be expected, as the UCB-Tuned exploits information that comes

from both the estimated mean and variance of each arm. Second, exploiting the 1{2-sub-

gaussianity in the Bernoulli distributed rewards strongly improves the performance of the

variance-free UCB1. This is due to the fact that a lower σ is associated to tighter upper

confidence bounds, which immediately translates into a reduction of the exploration of
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low exploited arms in the long run. However, the property of the 1/2-sub-gaussianity

could be efficiently used if and only if we are sure that the rewards are indeed generated

from a Bernoulli distribution with a probability of success constant over time. Finally,

the UCB class shows a noisy behavior, especially in the first few hundred trials. This

initial noise comes from the fact that, in the first time periods, the estimates for the

upper confidence bounds are imprecise due to low sample sizes. This means that the

algorithm needs quite a few extra pulls to really get a correct estimate for the value of

each arm. As in the first trials little information is available on the arms themselves, then

the algorithm tends to explore a lot.13 Finally, UCB-Tuned and annealing Softmax have

a very similar performance in both test-beds, while annealing ε-greedy seems to achieve a

better performance than the 1/2-UCB, especially under a high number of arms. Part of

the reason has to do with the necessity of the UCB to explore all the arms in the test-bed

at the beginning of the experiment. If the number of arms is large, then the per-period

regret within the first trials will be necessarily high and noisy.

13 The UCB family is quite efficient both in finding the actual best arm, and in ensuring a close surveil-
lance of the environment. In other words, if there is an arm that changes the probability of generating
a positive reward, eventually the UCB will detect it. However, this constant monitoring has a funda-
mental drawback: once the arms become huge in number, the UCB will not have enough trials left to
exploit the best solution effectively.
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4 Thompson Sampling

As we have already hinted in the introduction, bandit algorithms can be tackled from a

Bayesian perspective as well. Indeed, the first bandit ever introduced in the reinforcement

learning literature has a Bayesian nature (Thompson, 1933). However, due to the absence

of closed form integrals and a subsequent computational intractability, Bayesian bandits

have been largely ignored up until a few decades. In this respect, the seminal work

of Gittins (1989) paved the way towards a full Bayesian implementation of an index

strategy. In particular, the Gittins index is a forward looking algorithms that plays

the arm that maximizes the expected present value of discounted future rewards at each

round t. Though possessing explicit optimality properties, this technique is rather hard to

implement, as it works only within a particular set of strict hypotheses.14 Besides Gittins,

other methods have been developed to further exploit the Bayesian prior-posterior link.

For example, the Bayes-UCB (Kaufmann et al., 2012) follows the reasoning behind the

UCB algorithm, but computes the upper confidence bound to the probability of success

by looking at the percentiles of the posterior distribution of the reward of each arm.

For the purpose of this thesis, we decide to rather focus on Thompson Sampling, a

technique that has been shown to be efficient and also rather simple to implement (Scott,

2010; Chapelle and Li, 2011). In particular, one convenient feature is that we can measure

its performance in terms of the frequentist regret in equation (2.3), thus making us able

to directly compare its behavior with that of the bandits explained so far (Agrawal and

Goyal, 2011; Kaufmann et al., 2012). Nevertheless, Thompson Sampling has an essentially

Bayesian nature: rather than selecting the arms according to their observed probability of

success (or their respective upper confidence bounds), it treats such probabilities as ran-

dom variables having their own distributions. Then, estimates for the success probabilities

of each arm are simply computed by randomly drawing samples from such distributions,

which are updated via Bayes rule as the experiment proceeds. As we will see in the fol-

lowing sections, such mechanism correctly identifies the best arm, while still maintaining

a reasonable degree of exploration.

14 For further details, see Weber (1992)
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Scott (2010) and Chapelle and Li (2011) introduced the first version of the algorithm,

and demonstrated its empirical superiority comparing it to other standard techniques.

In particular, Chapelle and Li (2011) showed how Thompson sampling achieves a better

performance than the Linear UCB algorithm introduced by Li et al. (2010) in the con-

text of a news article recommendation system.15 In addition, it is particularly efficient in

dealing with the problem of delayed feedback (that is, entering in trial t and pulling an

arm without having observed rat´1,t´1), which is quite common in all business applications

(Vernade et al., 2018).

The purpose of this chaprter is twofold. First, it reviews the fundamentals behind Thomp-

son Sampling and the more general randomized probability matching algorithm. The cen-

ter of the analysis is to provide a clear framework to ensure a proper empirical comparison

of their performances with the other non-Bayesian algorithms. Second, it introduces the

Fractional Factorial Thompson Sampling algorithm presented in Scott (2010), which is

the object this thesis intends to improve on. In particular, section 4.1 deals with the

general formulation of Thompson Sampling and analyzes its simplest version (the beta-

binomial case). Section 4.2 extends the analysis to a further class of algorithms, known as

randomized probability matching. Finally, section 4.3 deals with the possibility to exploit

the potential structure of the arms to increase the performance of the bandit using the

algorithm proposed by Scott (2010).

4.1 Binomial Thompson Sampling

Thompson Sampling is an allocation heuristic that follows a simple reasoning: the num-

ber of observations to allocate to a treatment is set to be directly proportional to the

probability of success of the treatment itself. In other words, if an option is more likely

to lead to a favorable result than another, the researcher should somehow feel morally

compelled to apply that option more than the others. To quote Thompson, 1933:

15 A bandit algorithm that directly exploits information in conjunction with the observed reward from
each arm is called contextual bandit. As an example, the UCB algorithm can be effectively improved
by assuming that the reward of each arm linearly depends on the features of the users that observes
the arm (such as age, or previously observed clicks). See Li et al. (2010) for detailed description of the
LinUCB and its application on the Yahoo! FrontPage module for news article recommendation.
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“If such a discipline were adopted, even though it were not the best possible,

it seems apparent that considerable saving of individuals otherwise sacrificed

to the inferior treatment might be effected. This would be important in cases

where either the rate of accumulation of data is slow, or the individuals treated

are valuable, or both.”

Eventually, this policy leads to a low per-period regret as the experiment proceeds. In

particular, Thompson Sampling has essentially a Bayesian nature. This means that we

need to set a prior over the rewards’ distributions. We denote such prior as qp¨q. Suppose

now that ν is our usual K-armed stochastic Bernoulli bandit in the sense of definitions

1 and 2, and assume we have already observed history Ht´1. Then, the true success

probability of every arm a P A follows a distribution

pµa | Ht´1q „ qpµa | Ht´1q (4.1)

called “posterior”, obtained via Bayes’ rule. In what follows we indicate both the distri-

bution and the density function of the mean reward as qp¨ | ¨q. Then, the posterior for µa

at the beginning of time t (prior to the observation of rat,t) is given by

qpµa | Ht´1q “
qpµaq

śt´1
s“1 papras,s | µaq1tas “ au

ş

qpµaq
śt´1

s“1 papras,s | µaq1tas “ audµa
, (4.2)

where paprat,t | ¨q is the likelihood function that models the observed rewards of arm at

at time t. Note that we are assuming that the reward distribution of each arm depends

uniquely on µa, and that the arms are independent. These assumptions will be relaxed

in section 4.2. Furthermore, the indicator functions simply serve to indicate that the

posterior distribution of the success probability of arm a receives an update only in those

trials where arm a is selected (that is, all s ă t for which as “ a).

As in the case of frequentist bandits, the optimal policy π˚ can either come from a

minimization of the loss associated to the sequential choice, or over the maximization of

the expected reward. Thompson Sampling achieves such a maximization by drawing a

random sample from the posterior distribution of the reward of each arm, and subsequently
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selecting the arm whose draw has had the highest value (Chapelle and Li, 2011; Russo

et al., 2018). As we will see later on, such a procedure allocates the pulls at every trial t

according to the reasoning introduced by Thompson (1933), which is known as randomized

probability matching. Algorithm 7 reports the general formulation of Thompson Sampling.

Algorithm 7 General Thompson Sampling

1: Prior Input: @a P A : µa „ qpµaq Ź Prior over the environment
2: for t “ 1, 2, 3 . . . , T do
3: For all a P A, sample µ̂aptq „ qpµa|Ht´1q, with qpµa|H0q “ qpµaq
4: Select arm at “ arg maxaPA µ̂aptq
5: Observe reward rat,t
6: Update the posterior via Bayes’ rule as in equation (4.2)

7: end for

Note that, unlike in the frequentist cases, the estimates for the probability of success

µ̂aptq at every time t do not come from a simple average of the observed rewards, but

are treated as random samples from the posterior distribution16. This randomness is

what drives the exploration: if indeed the posterior is poorly concentrated, or only few

observations have been registered for each arm, then the variance of the µ̂aptq drawn

will be quite high, allowing for sub-optimal arms to get their chance of being explored.

As an example, figure 4 plots 1000 draws from a Betap2, 1q and a Betap20, 10q against

1000 draws from a Betap10, 20q. While for the first two distributions the mean is 2
3
, the

variance becomes progressively lower (0.056 and 0.0071 respectively), thus concentrating

the mass around the mean. On the other hand, the distribution plotted on the horizontal

axes has an inferior mean of 2
5
. But then, as the parameters of the beta increase (or,

equivalently, as the number of observations goes up), it becomes clear that the payoff of

the distribution plotted on the vertical axis is better than the one on the horizontal axis.

The easiest way to exploit this posterior updating is using the conjugacy property

of certain classes of distributions17 . In particular, in our K-armed stochastic Bernoulli

bandit environment ν with mean vector µ “ pµaq
K
a“1, the choice of a Betapαa, βaq prior

16 Note that If t “ 1, µ̂ap1q is sampled from the prior qpµaq for every arm.
17 A class of distributions is conjugated with respect to a particular likelihood function if it is closed with

respect to Bayesian updating. In a more formal way, let ppθq P Pθ be a generic element of a class of
distributions Pθ which all depend on a parameter θ P R, and ppx | θq be the likelihood that models the
data. Then, Pθ is said to be conjugate with respect to ppx | θq if and only if @p P Pθ : ppθ | xq P Pθ.
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Figure 4: Scott (2010): One thousand draws from the joint distribution of independent
beta distributions. Red points indicate that the draws from the distributions on the
horizontal axes exceed the one on the vertical axis, while blue the opposite.

over each arm seems natural. But then, the joint prior distribution of the vector µ is

qpµq 9
K
ź

a“1

µαa´1
a p1´ µaq

βa´1.

Then, given the fact that for each arm a and for every time t, pra,t|µaq „ Bernoullipµaq,

then the posterior of µ is

qpµ|Ht´1q 9

K
ź

a“1

µαa`Saptq´1
a p1´ µaq

βa`n̂aptq´Saptq´1,

where n̂aptq is the usual number of times arm a has been selected up to trial t, and Saptq :“
řt´1
s“1 ras,s1pas “ aq is the total number of successes registered for arm a up to t. But then,

Thompson Sampling simply requires to draw one vector µ̂ptq “ pµ̂1ptq, . . . , µ̂Kptqq from the

joint distribution above18 at each trial, and then to select the arm that corresponds to the

highest µ̂aptq. When the number of pulls allocated to an arm is low, the draws from its beta

posterior will have a high variance. On the other hand, a high number of plays will lead to

a draw that is highly concentrated around the empirical mean, allowing for a more precise

ranking of the arms. In other words, the algorithm favors exploration within the first trials,

18 Note that arms here are assumed independent.
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and exploitation in the latest ones. Algorithm 8 reports in detail the mechanism behind

the beta-binomial Thompson Sampling. In particular, such a formulation works both

within the context of Bernoulli distributed rewards, and in the case when the responses

follow more general binomial distribution. This fact comes particularly at hand when the

same arm is pulled multiple times at each t, a common situation in many real business

applications. In general, αa and βa are set to 1 @a P t1, . . . , Ku, which is equivalent to

assigning a uniform prior on [0,1] to the success probability of each arm.

Algorithm 8 Beta-Binomial Thompson Sampling

1: Prior Inputs: @a P A : µ̂ap1q „ Betapαa, βaq
2: Input: pn̂ap1qq

K
a“1 Ð 0 P RK Ź Pulls counter

3: Input: pSap1qq
K
a“1 Ð 0 P RK Ź Successes counter

4: for t “ 1, 2, 3 . . . , T do
5: for all a P At do
6: Draw µ̂aptq „ Betapαa ` Saptq, βa ` n̂aptq ´ Saptqq

7: end for
8: Select the arm at “ arg maxaPA µ̂aptq
9: Observe reward rat,t Ź (rat,t | µatq „ Bernoullipµatq

10: n̂apt` 1q Ð n̂aptq ` 1
11: Satpt` 1q Ð Satptq ` rat,t

12: end for

While a Bayesian regret analysis is rather hard to treat, Agrawal and Goyal (2011)

provide an upper bound to the regret RT in the case of beta-binomial Thompson sampling

that is directly comparable to the bounds we have seen in the sections above. In particular,

recalling that the sub-optimality gap of arm a is ∆a˚,a “ µ˚ ´ µa, where a˚ is the arm

with a probability of success equal to µ˚ “ maxa µa, the following theorem holds:

Theorem 4. Agrawal and Goyal (2011) - Let ν be a K-armed stochastic Bernoulli bandit

environment with success probability vector µ “ pµaq
K
a“1 and finite horizon T .

If @a P t1, . . . , Ku : µa „ Betap1, 1q, then @t P t1, . . . , T u :

Rt ď O

ˆ„

ÿ

a:µaăµ˚

1

∆2
a˚,a

2

log t

˙

. (4.3)

But then, Thompson sampling is quasi-optimal up to a constant that is inversely

proportional to the squared sub-optimality gap. Comparing equation (4.3) with the bound
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on the UCB1 introduced by Auer et al. (2002) in equation (3.6), we can see that the second

possesses a slightly more convenient dependency on ∆a˚,a (as the term is not squared),

and an optimal dependency on t. However, Thompson Sampling is superior in terms of

immediate exploration and early per-period regrets. Moreover, it is not forced to explore

whenever it has an appropriate estimate of the probability of success of each arm, and

does not suffers much efficiency loss in the case of delayed feedback (Chapelle and Li,

2011).

Figure 5: Average per-period regret over 500 simulation of four algorithms: annealing ε-
greedy, annealing Softmax, UCB-Tuned and binomial Thompson Sampling with a uniform
prior over the probability of success of each arm. Horizon is set to T=2000

Figure 5 displays the same comparison made in figure 3 but complements it with the

inclusion of the results of 500 simulations from a the beta-binomial Thompson Sampling

with uniform priors. To make the simulation convey more information, we have doubled

the horizon, setting it to T “ 2000. Panels descriptions are the as usual, with true means

generated randomly form a Betap1, 6q. It is immediately clear that the performance of the

beta-binomial Thompson Sampling is preferable in long run, as no stationary behavior is

shown in neither test-beds. In particular, when the number of arms in low, the overall

performance of all algorithms is similar. Under many arms however, Thompson Sampling

suffers more within the first trials, and recovers later on. As a general rule of thumb

then, if the horizon the is low (below 1000 trials), the best performing algorithm is the

annealing Softmax. Otherwise, under a large horizon, both UCB-Tuned and Thompson
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Sampling are preferable.

In the following section, we present a more general formulation of Thompson Sampling,

which allows to exploit the potential correlation that can exists in certain real business

scenarios.

4.2 Randomized Probability Matching

Thompson sampling is an algorithm that belongs to the family of randomized probability

matching policies (RPM for short). Within the context of Bayesian bandit algorithms,

a RPM algorithm randomly selects one or more arms at every time t according to a

probability vector wt “ pwatq
K
a“1, where wat is the estimated probability that arm a is the

most rewarding one. More formally, let µ “ pµaq
K
a“1 denote the usual success probability

vector in a K-armed stochastic Bernoulli bandit environment. The probability of arm a

to be the best at the beginning of time t (that is, after having observed history Ht´1) is

wat :“ Ppµa “ maxtµ1, . . . , µKu|Ht´1q (4.4)

Suppose now that the true success probabilities depend on a vector of unknown parameters

θ P Θ Ă Rp. In other words, @t P t1, . . . , T u it holds that prat,t | θq „ Bernoullipµatpθqq.

Then, recalling that pp¨|Ht´1q is the posterior distribution of θ conditioned on history

Ht´1, equation (4.4) can be rewritten as

wat “

ż

Θ

1apθqppθ|Ht´1qdθ “ Er1apθq|Ht´1s, (4.5)

where 1apθq “

$

’

&

’

%

1 if µapθq “ maxtµ1pθq, . . . , µKpθqu

0 elsewhere

.

Following the idea of Thompson (1933), the vector of “best arm” probabilities wt

determines the way in which the various treatments are allocated over the experimental

subjects. Suppose that at each round t we have a budget of 100 units - observation that

we can spend, and K arms among which to choose. In the RPM framework, each of

the 100 units has a probability wat of ending up in arm a. If a˚ is the arm that has
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the highest probability of success, we expect that eventually wa˚,t Ñ 1 and wa‰a˚,t Ñ 0

as t Ñ 8. In other words, once the algorithm has identified the best arm, it allocates

all the available pulls to it up until the end of the experiment. The following example

may further clarify the idea. Every day, a business company has to contact 100 clients to

sell a particular product, and the clients are divided into K clusters according to certain

socio-economic characteristics. These clusters constitute our arms set. The goal of the

company is to identify the cluster that has the highest probability of accepting the offer

and buy the product. Each time a cluster receives a pull, one client in that cluster is

randomly called. At the beginning of the experiment then, the 100 pulls will be allocated

almost uniformly across the clusters, while half way through the experiment, all the pulls

will start concentrating around the one that has delivered the highest number of positive

responses. Note that the number of allocations to distribute at every time t can vary

depending on the experimental design. In the previous sections, we have allocated 1 pull

each t. This is equivalent to a scenario where the response of the selected arm at every

trial is immediate19. The main drawback of equation (4.5) is that the integral is often

not available in closed form, so it needs to be estimated via Monte Carlo approximation.

Specifically, letting g P t1, . . . , Gu the index for a generic draw θ
pgq
t from the posterior

distribution ppθ|Ht´1q available at round t, one can compute 1apθ
pgq
t q by simply ranking

the corresponding means µapθ
pgq
t q. Then, by the law of large numbers, for each arm

a P t1, . . . , Ku

1

G

G
ÿ

g“1

1apθ
pgq
t q Ñ wat as GÑ 8. (4.6)

In other words, wat represents the expected number of times arm a has been the best

arm in a total of G simulations. Algorithm 9 reports the technical details of RPM. In

particular, the version reported here allocates M pulls across the arms at every trial t

19 A situation where multiple arms are selected within the same trial period t can have two possible
interpretations. The first is the one in the example above: at each round, the learner has a budget of
pulls to allocate within the K-armed test-bed. The second interpretation instead treats the multiple
pulls as a delayed feedback. In other words, the responses come in batches based on a context-related
rule. For example, the number of clicks on an ad online refreshes every hour. In such a setting, the
learner has to allocate a pull without knowing the result of the previously allocated one. As Chapelle
and Li (2011) point out, RPM strategies are particularly efficient in dealing with batch updates, while
other deterministic strategies suffer more.
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according to a sequence of integers pψa,tq
K
a“1 with

řK
a“1 ψa,t “M randomly drawn from a

multinomial distribution with probabilities given by wt. This means that each arm a is

pulled ψa,t times, each with probability wat, and delivers the sequence of rewards ra,t “

pr
p1q
a,t , . . . , r

pψa,tq
a,t q of length ψa,t (where each component is Bernoullipµapθqq distributed).

Algorithm 9 Randomized Probability matching with M pulls

1: Prior Inputs: θ „ qpθq Ź Prior over θ
2: Input: M ě 1 pulls to allocate each day, G ě 1 samples
3: for t “ 1, 2, 3 . . . , T do
4: for g “ 1, . . . , G do
5: Draw θ

pgq
t „ qpθ|Ht´1q Ź Sample from the posterior

6: Observe the arm a
pgq
t “ arg maxaPA µapθ

pgq
t q

7: 1
a
pgq
t
pθ
pgq
t q “ 1, 1apθ

pgq
t q “ 0 @a ‰ a

pgq
t

8: Compute wt “ pwatq
K
a“1 as in equation (4.6)

9: Draw pψa,tq
K
a“1 P RK from MultinomialpM,wtq

10: For all a with ψa,t ą 0, observe rewards sequence pr
piq
a,tq

ψa,t
i“1

11: Update the posterior via Bayes’ rule.

12: end for

In the beta-binomial Thompson sampling case as in algorithm 8, we can assume,

without loss of generality, that µapθq “ θa @a P A. In other words, the true probability

of success of each arm depends exclusively on a single parameter θa that is specific to

the arm itself. This means that the corresponding allocation probability vector wt has

components given by

wat “
1

Bpα̂t, β̂tq

ż 1

0

θα̂t´1
a p1´ θqβ̂t´1

ź

k‰a

Ppθk ă θa|Ht´1qdθa,

where α̂t :“ α ` Saptq and β̂t :“ β ` n̂aptq ´ Saptq and Bp¨, ¨q is the normalizing beta

function associated to the Betap¨, ¨q distribution.

If we take a closer look at algorithm 9, two fundamental aspects are worth mentioning.

The first one concerns the difference between Softmax and RPM allocation rules. The

second one instead deals with the difference between pure Thompson Sampling and RPM.
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4.2.1 Difference between RPM and Softmax allocation rules

Both RPM and Softmax algorithms randomly pull one or more arms at each trial t

according to an unbalanced probability vector. Such unbalance comes from the fact that

more rewarding arms have a higher probability of being selected. However, the difference

between ŵt in algorithm 3 and wt in algorithm 9 concerns the exact meaning of the

components in each vector. Within the same K-armed stochastic Bernoulli bandit with

µapθq “ θa, the probability of selecting arm 1 after having observed history Ht´1 in the

RPM is given by

w1t “ Ppθ1 “ maxtθ1, . . . , θKu | Ht´1q. (4.7)

In other words, arm 1 is selected with a probability which is equal to the (estimated)

probability of being the best arm in the pool. The Softmax algorithm instead randomly

explores arm 1 with a probability given by

ŵ1t “
eµ̂1ptq{τ

řK
j“1 e

µ̂jptq{τ
(4.8)

where τ ą 0 is the temperature parameter that drives the explorative component on the

algorithm, and µ̂aptq is the estimated probability of success of arm a (computed as in

the frequentist case). Such a probability comes from a pre-defined reweighing rule of the

average success rate of each arm. While in both cases the more rewarding the arm is, the

higher the chances of being selected it has, the exploration that emerges from equation

(4.7) and from (4.8) is completely different. The first obvious reason is that the RPM has

a Bayesian nature and the selection probabilities depend on the prior ppθq. On the other

hand, Softmax allocation rule is purely frequentist and solely depends on τ . The second

reason deals with the way in which wt and ŵt are designed. As the RPM randomly selects

an arm according to its probability of being the best, at some point in time w1t Ñ 1 if

arm 1 is the (estimated) best arm, and w1t Ñ 0 otherwise. The Softmax instead assigns

a higher selection probability to the most rewarding arms, without necessarily allocating

all the pulls to the highest one. Indeed, the behavior of ŵ1t strictly depends on the

pre-set temperature parameter. If τ is kept constant throughout the experiment, each of
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the component of ŵt will eventually become constant and greater than zero. Figure 6

highlights such a difference.

Figure 6: Allocation probabilities over a 5-arms test-bed for four algorithms: Beta-
Binamial Thompson Sampling with G “ 1000 and uniform prior over the probability
of successes, annealing Softmax with gτ ptq “ 1{

?
t, and Softmax with τ “ 1 and τ “ 0.3.

Arm 1 has a probability of success of 0.58, and arm 2 of 0.4, arm 3 of 0.3, arm 4 of 0.2
and arm 5 of 0.1.

While the behavior of the probability schedules wt and ŵt is similar in the anneal-

ing version of the Softmax algorithm (where the temperature is decreasing with t), the

probabilities in the Softmax with constant τ become stable after a few trials. In other

words, this algorithm selects sub-optimal arms with a positive probability even though

it has identified the best one. A proper tuning of τ is indeed the fundamental issue of

the Softmax strategy: if a too high τ risks to be costly in terms of regret, while a low
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one may make the algorithm get stuck on a sub-optimal arm. This is true also in the

annealing version, where the risk of getting stuck might still occur if the rate at which

τ decreases is too fast. But then, it is clear how, under a reasonably distributed prior

over the parameters (such as a uniform distribution), RPM strategies possess a desirable

selection criteria.

4.2.2 Difference between RPM and pure Thompson Sampling

As already stated above, Thompson Sampling belongs to the family of randomized prob-

ability matching algorithms. And indeed, a careful reader will have already noticed that

the general version of Thompson Sampling presented in algorithm 7 is equivalent to a

RPM with only one draw from the posterior at each trial t (that is, when G “ 1, Scott

(2015)). As a consequence, Thompson Sampling is a lot faster than PRM when sam-

pling from conjugate posterior distributions is rather simple. In this case, the empirical

difference between Thompson sampling and RPM is minimal, as figure 7 demonstrates.

On the other hand, if the posterior is not available in closed form and thus we need to

Figure 7: Average per-period regret of Binomial Thompson Sampling with G “ 1 and
with G “ 1000 over 100 simulations of a 5-arms testbed with probability of success of
arm 1 equal to 0.58, arm 2 of 0.4, arm 3 of 0.3, arm 4 of 0.2 and arm 1 of 0.1. Uniform
priors were assigned over the probability of success of every arm.

apply MCMC methods to sample from it, selecting an arm based on a single draw can
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be inefficient. Think for example of a standard Gibbs Sampler where the first J samples

are thrown away (the so called “burn-in”). Which sample should we use at every trial t

to compute the allocation probabilities? Should it be the J ` 1th, or the J ` 1000th?. As

there is no pre-defined rule, the safest option is to exploit all the samples from J+1 to

J ` 1000 to compute wt, so to allocate the pulls according to a properly computed best

arm probabilities. In line with the literature (Zhou et al., 2018; Scott, 2010, 2015; Urteaga

and Wiggins, 2018; Russo et al., 2018), from now on will treat Thompson Sampling and

RPM as synonyms.

4.3 Fractional Factorial Thompson Sampling

As seen in section 4.1, Thompson Sampling is an efficient strategy in almost every case,

but eventually its performance decreases as the number of arms among which to choose

becomes large. In the framework of a real business application, the number of arms can

be certainly high, but can also follow a factorial structure (Scott, 2015). For example,

the arms can be defined at the beginning of the experiment as a combination of several

features. Rather than looking for the best arm directly, we can think of an algorithm

that aims at finding it indirectly by understanding which combination of such features

possesses the highest probability of success. Suppose that the same business company

described before has divided its client base in mutually exclusive clusters according to

three features: sex (male - female), age group (below 25, 25-34, 35-44, 45-54, 55-64, else)

and geographical location (north, centre, south). Then, there are 36 different possible arm-

clusters to contact for our campaign, a number that, under a sufficiently long horizon, is

still manageable. However, if individuals where clustered according to age group, sex, the

20 regions in the country and whether they live in a city or in a non-urban area, the total

number of arms becomes 480. Even with a long horizon, such a huge pool of arms cannot

be tackled efficiently by treating each arm independently from the others.

Ideally, we wish to incorporate this factorial structure of the arms in our model so

to drive the exploration towards the features that are really relevant in shaping the re-

ward. Suppose that @t P t1, . . . , T u the probability of success for the arm chosen at t is
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determined by

µatpθq “ Pprat,t “ 1|θq “ HpxT
atθq, (4.9)

where θ P Θ Ă Rp is a vector of parameters, xat is the vector that collects all the p features

of arm at and Hp¨q is a link function. In other words, the bandit environment ν “ pPaq
K
a“1

is a K-armed stochastic Bernoulli bandit with Bernoulli
`

HpxT
a θq

˘

distributed rewards.

Consistent with Scott (2010), we focus here on the case in which the link function has

a probit formulation with Φpzq denoting the cumulative density function of the standard

normal distribution evaluated at z. Furthermore, we assume, without loss of generality,

that the vectors xat are exclusively made of binary indicator variables with 0 indicating

that a level of a feature is absent, and 1 if it is present in the arm pulled at time t. Note

that the number of parameters in this case is different from the number of actual features.

In the business company example, the number of features is 4 (age, sex, region, urban),

but the associated number of parameters in the probit regression with binary regressors

is p “ 28 (constant included)20. As the rest of the analysis depends on p rather than

on the number of real features-clusters, from now on we prefer to use the term “feature”

to indicate the generic component of the vector of dummies xat P Rp. Specifically, we

denote by Xt´1 P Rpt´1qˆp the matrix that contains all the feature vectors of the arms

selected up to the beginning of time t (that is, before action at has been played), and by

rt´1 the associated response vector. In other words, under the case of one pull per day,

Xt´1 “ px
T
a1
, . . . ,xT

at´1
qT, and rt´1 “ pra1,1, . . . , rat´1,t´1q

T. Slightly forcing the notation,

in what follows we indicate history Ht´1 as the couple pXt´1, rt´1q.

Based on the above assumptions, our bandit environment becomes the parameter

space Θ itself. Denote our prior over Θ as qpθq. Then, the posterior distribution of θ

given Ht´1 becomes

qpθ | Xt´1, rt´1q “
qpθq

śt´1
s“1 ΦpxT

asθq
ras,sp1´ ΦpxT

asθqq
1´ras,s

ş

Θ
qpθq

śt´1
s“1 ΦpxT

asθq
ras,sp1´ ΦpxT

asθqq
1´ras,sdθ

(4.10)

20 This comes from a simple combination. The feature “sex” has 2 levels, and so its associated dummy is
xsex “ 1 if male, 0 if female. Equivalently, “region” has 20 levels that can be discretized in 19 dummies.
Then, the total number of parameters is 1 (“sex”) + 5 (“age group”) + 3 (“geographical location”) +
1 (“urban area”) +1 (the constant) = 28.
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where ras,s is our usual Bernoulli distributed reward. Note that, despite the fractional

structure of the configurations, the distribution of the rewards coming from each arm is

assumed independent of the other arms, conditionally on θ. Algorithm 10 reports the

general mechanism of the Fractional Factorial Thompson Sampling.

Algorithm 10 Fractional Factorial Thompson Sampling with M pulls

1: Input: X0 P R0ˆp, r0 P R0 Ź Empty feature matrix and outcomes vector
2: Input: M ě 1 G ě 1.
3: for t “ 1, 2, 3 . . . , T do
4: for g P 1, 2, 3, . . . ., G do
5: Sample θ

pgq
t from qpθ | Xt´1, rt´1q.

6: Get a
pgq
t “ arg maxaPA xT

a θ
pgq
t

7: 1
a
pgq
t
pθ
pgq
t q “ 1, 1apθ

pgq
t q “ 0 @a ‰ a

pgq
t

8: end for
9: Compute wt “ pwatq

K
a“1 as in equation (4.6)

10: Draw pψa,tq
K
a“1 P RK from MultinomialpM,wtq

11: for all a P A where ψa,t ą 0 do
12: Observe the response vector ra,t of size ψa,t.
13: r Ð prT, rT

a,tq
T Ź Extend the outcomes vector

14: X Ð rXT,xa, . . . ,xa
loooomoooon

ψa,t times

sT Ź Extend the feature matrix

15: end for
16: end for

At time 0, the algorithm requires to initialize an empty feature matrix X0 and an

empty vector of responses r0. At each trial t the pulls are distributed across all the possi-

ble (or available) combinations according to the usual probability probability vector wt,

computed via Monte Carlo approximation with the draws from the posterior distribution

qpθ | Xt´1, rt´1q. Notice in particular that, as Φp¨q in an increasing function, it is sufficient

to increase the best arm counter at every trial g of the arm with the highest xT
a θ

pgq
t (point

6 in the algorithm). This allows to save some computational time, especially under the

case of a high p. Finally, the matrix Xt´1 and the vector rt´1 are updated by simply

appending the M feature vectors of the selected arms and the M responses observed,

respectively.

A careful reader may argue that such a setting, while being reasonable in terms of

assumptions, is rather impractical to apply. Indeed, as we have seen in section 4.1, the

most efficient way to deal with Bayesian models is by exploiting the conjugacy property
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of certain distributions. However, such a property is rather rare and, at first glance, it

does not seem to apply to our case. Not surprisingly, the absence of a conjugate fam-

ily of distributions has lead to the design of several approximations methods to sample

from the posterior in equation (4.10), especially in the case of a normal prior over each

parameter of the probit regression. These methods mainly deal with standard data aug-

mentation procedures via Markov Chain Monte Carlo (Albert and Chib, 1993), adaptive

Metropolis-Hastings algorithms (Roberts and Rosenthal, 2001) and generalizations of the

Hamiltonian Monte Carlo (Hoffman and Gelman (2014)). All of these methods present

their strengths and their liabilities, elegantly summarized by Chopin and Ridgway (2017).

In particular, in the case of large n and moderate p (that is, high number of observations

and reasonable amount of parameters in the probit regression), standard data augmen-

tation suffers more than the Hamiltonian sampler and exhibits mixing problems in the

case of small n and large p as well. Moreover, MCMC and Hamiltonian-based methods

are generally computationally inefficient for our purposes, as they require a non-negligible

amount of time to be implemented when p is large. As a consequence, these liabilities

have limited the practical use of Thompson Sampling in real business applications (espe-

cially within the context of online settings, where immediate elaboration of the feedback

is necessary and the overall amount of observations is very high).

However, the absence of a conjugate family of distribution under the case of a probit

likelihood has been recently denied by Durante (2019), where it is shown that, under a

normal prior over the regression parameters, the posterior follows a unified skew-normal

distribution (Arellano-Valle and Azzalini, 2006; Azzalini and Capitanio, 2014). While

this novel result offers the opportunity to enlarge the literature on Thompson Sampling

in the case of contextual bandit algorithms, it still faces computational bottlenecks in

large n studies. The solution presented in this work consists of a Sequential Monte Carlo

approach. These two advances in the fractional factorial literature are presented in Section

5. The remaining part of this Section instead summarizes the MCMC sampling method

used in Scott (2010).
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4.3.1 Posterior approximation via Gibbs sampling

The Gibbs sampling technique (Gelfand and Smith, 1990) is a well known Markov Chain

Monte Carlo (MCMC) algorithm that is largely used to sample from the joint posterior

distribution of a set of parameters in the absence of direct conjugacy between the prior

and the likelihood. Again, let θ “ pθ1, . . . , θpq with p ą 1 be the vector of parameters of

interest, and fix a generic time period t within the horizon. To simplify the analysis, we

set the number of pulls allocated each day equal to 1. Then, our history Ht´1 consists

of the couple pXt´1, rt´1q, with Xt´1 “ px
T
a1
, . . . ,xT

at´1
qT and rt´1 “ pra1,1, . . . , rat´1,t´1q

T.

Suppose now that drawing θl „ qpθl | tθj, j ‰ lu,Ht´1q - the full conditional distribution

of a single component given the observed history - is rather simple. Initializing the Markov

Chain at an arbitrary value θp0q “ pθ
p0q
1 , . . . , θ

p0q
p q, at each round g “ 1, . . . , G the sampler

requires to simulate:

θ
pgq
1 from qpθ1 | tθ

pg´1q
j , j ‰ 1u,Ht´1q

θ
pgq
2 from qpθ2 | tθ

pgq
1 , θ

pg´1q
j , j ě 2u,Ht´1q

...

θpgqp from qpθp | tθ
pgq
j , j ď pu,Ht´1q.

Then, it can be shown that as GÑ 8, then θpGq is a sample from the the joint posterior

distribution of pθ | Ht´1q. Within the context of probit regression, Albert and Chib

(1993) introduced a data augmentation approach based on the Gibbs sampler to provide

an efficient approximation of the distribution in equation (4.10).

Define now a vector of latent variables z “ pza1 , . . . , zasq where zas „ N pxT
asθ, 1q for

every s P t1, . . . , t ´ 1u. Following Albert and Chib (1993), we rewrite the components

of r as ras,s “ 1tzas ą 0u, where 1 denotes the usual indicator variable21. Then, the

conditional distribution of each zas given Xt´1, rt´1, and θ is a truncated normal. To see

21 It follows from simple calculations that @s P t1, . . . , t´ 1u : ras,s „ BernoullipΦpθTxasqq. In fact:

Ppras,s “ 1q “ Ppzas ą 0q “ 1´ Φp´xT
asθq “ ΦpxT

asθq
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this, notice that the joint posterior density of θ and z given rt´1 and Xt´1 is

qpθ, z | Xt´1, rt´1q 9 qpθq
t´1
ź

s“1

`

1tzas ą 0, ras,s “ 1u ` 1tzas ď 0, ras,s “ 0u
˘

φpzas ; x
T
asθ, 1q,

(4.11)

where φp¨, µ, σ2q denotes the density function of the normal distribution with mean µ

and variance σ2.

Based on the above results, samples from qpθ|Xt´1, rt´1q can be obtained via a Gibbs

sampler which iterates between the two full conditionals qpθ|z,Xt´1, rt´1q and qpz |

θ,Xt´1, rt´1q. Recalling the above discussion, both are available in closed-form. Indeed,

from equation (4.11) it holds that

qpθ | z,Xt´1, rt´1q 9 qpθq
t´1
ź

s“1

φpzas ; x
T
asθ, 1q. (4.12)

Then, by assigning a multivariate normal prior over θ as θ „ N pξ,Σq with ξ P Rp and

Σ P Rpˆp, we can easily exploit the conjugacy property of the normal model. In particular,

according to standard linear regression results it holds that pθ | z,Xt´1, rt´1q „ N pθ̃,Ωq,

with

Ω “ pΣ´1
`XT

t´1Xt´1q
´1 and θ̃ “ ΩpXT

t´1z` Σ´1ξq. (4.13)

On the other hand, the components of z are conditionally independent random variables

with full conditional distribution as

zas | rt´1,xas ,θ „ N pθTxas , 1q

$

’

’

&

’

’

%

truncated at the left by 0 if ras,s “ 1

truncated at the right by 0 if ras,s “ 0.

(4.14)

Algorithm 11 summarizes the steps to follow to apply the Albert and Chib (1993) algo-

rithm to our case (step 5 in algorithm 10). To shorten the notation, from now on we

denote the truncated normal distribution with support in r0,8q as N`
0 , and N´

0 in the

other case. Note that the sampler does not change much under M ą 1. The only differ-

ence is the dimension of the matrix Xt´1, which lives in RMpt´1qˆp, and the vector rt´1,

that is in RMpt´1q.
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Algorithm 11 Albert and Chib (1993) Gibbs sampler (with M “ 1)

1: Prior Input: θ „ N pξ,Σq
2: Fix t P t1, . . . T u
3: Ht´1 “ pXt´1, rt´1q P Rt´1 ˆ Rpt´1qˆp Ź Observed History
4: Input: θp0q P Rp

5: for g P 1, 2, 3, . . . ., G do
6: for s P 1, . . . , t´ 1 do
7: if ras,s “ 1 then

8: Sample z
pgq
as „ N`

0 px
T
asθ

pg´1q
q

9: else
10: Sample z

pgq
as „ N´

0 px
T
asθ

pg´1q
q

11: end for
12: zpgq Ð pz

pgq
a1 , . . . z

pgq
at´1q

T P Rt´1

13: Sample θ
pgq
t „ N pθ̃pgq,Ωq with θ̃

pgq
and Ω as in (4.13)

14: end for

After convergence, the quantities θ
pgq
t can be viewed as samples from the posterior qpθ |

Xt´1, rt´1q. This method allows Monte Carlo inference on the functionals of the posterior

in an effective way, but becomes slower as t increases. Moreover, it loses effectiveness

under a high number of parameters (Chopin and Ridgway, 2017). The main disadvantage

of algorithm 11 within the context of bandit algorithms is the sequentiality of the draws at

each round, which require a non negligible amount of time (especially under high G and t).

Indeed the MCMC sampler needs to be implemented from zero at the beginning of each

trial t and its overall duration increases as the experiment proceeds. This computational

burden significantly lowers the applicability of MCMC methods in the context of real

applications of Bayesian bandits. In the next section we introduce a result that allows

us to draw i.i.d. samples from the posterior without relying on MCMC methods or data

augmentations.
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5 Advances in Fractional Factorial Thompson Sam-

pling

As already hinted in the introduction, this work intends to extend the current literature

on Thompson Sampling in two directions. First, it applies the novel conjugacy property

for the regression coefficients in the probit likelihood with Gaussian priors presented in

Durante (2019) to the Fractional Factorial algorithm in Scott (2010). This conjugacy

allows to draw i.i.d. samples from the exact posterior, without the need to run time-

consuming MCMC data augmentation algorithms. Second, it presents a first solution

to the scalability associated with the proposed i.i.d. sampler, by combining this routine

with Sequential Monte Carlo solutions. The resulting performance of these two advances

is almost equal to the one obtained by applying Albert and Chib (1993) Gibbs sampler,

but the overall running time of the new algorithm is significantly lower, thus increasing

its overall applicability.

The chapter is divided as follows: Section 5.1 introduces the Independent Additive Sam-

pler in Durante (2019) and applies it to the Fractional Factorial Thompson Sampling

scheme, Section 5.2 describes a Sequential Monte Carlo procedure which we propose to

improve scalability, and Section 5.3 compares the performance of all the algorithms pre-

sented in this thesis.

5.1 The unified skew-normal and the Independent Additive Sam-

pler

Durante (2019) proved that, under a normal prior over each parameter of the probit

regression in equation (4.9), the joint posterior distribution qpθ | Xt´1, rt´1q is a unified

skew-normal (Arellano-Valle and Azzalini, 2006; Azzalini and Capitanio, 2014). In line

with the literature, we indicate such a distribution as SUNp,t´1, where p is the number of

parameters, and t´ 1 is the usual number of observations up to the beginning of time t.

This distribution is a generalization of the skew-normal distribution, and has the following

probability density function:
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Definition 4. - Unified skew-normal - Let θ „ SUNp,t´1pξ,Σ,∆,γ,Γq, where ξ P Rp,

Σ P Rpˆp, ∆ P Rpˆt´1, γ P Rt´1 and Γ P Rt´1ˆt´1. Let Σ “ σΣ̄σ, where σ “

diagt
a

Σr1,1s, . . . ,
a

Σrp,psu and Σ̄ is a correlation matrix. Then, the density function of θ

is equal to

φppθ ´ ξ; Σq
Φt´1pγ `∆TΣ̄´1σ´1pθ ´ ξq; Γ´∆TΣ̄´1∆q

Φt´1pγ; Γq
, (5.1)

where φppθ ´ ξ; Σq denotes the density function of a p-variate normal with mean ξ and

variance-covariance matrix Σ and Φkp¨;Aq denotes the cumulative density function of

Nkp0k, Aq, that is k-variate normal with variance-covariance matrix A and mean 0k eval-

uated at ¨.

The intuition behind the shape of the SUNp,t´1 is rather simple: it consists of a

multivariate normal distribution that is “skewed” by a component defined as a ratio of two

cumulative distribution functions of a multivariate normal. In particular, the amount of

the skewness is determined mainly by ∆, whereas γ and Γ serve as parameters controlling

dependence and departures from normality. Notice in fact that if ∆ “ 0pˆt´1, then

SUNp,t´1pξ,Σ, 0pˆt´1,γ,Γq “ Nppξ,Σq. For further properties of the SUN, see Azzalini

and Capitanio (2014), chapter 7.

To see how and why the above distribution is the posterior in a probit regression with

Gaussian priors for the coefficients, we first restrict the analysis to a simple SUN1,1. Let

Ppra1,1 “ 1 | θq “ Φpθxa1q be our probit regression, where xa1 P R indicates the generic

unique feature of the arm chosen at t “ 1 (not necessarily a dummy). If we set θ „ N p0, 1q

as a prior, the posterior distribution of θ given xa1 and ra1,1 is

ppθ | xa1 , ra1,1q 9 φpθq ˆ tΦpθxa1q
ra1,1p1´ Φpθxa1qq

1´ra1,1u

9 φpθqΦpp2ra1,1 ´ 1qθxa1q

9 φpθqΦpp2ra1,1 ´ 1qxa1px
2
a1
` 1q´1{2θ; px2

a1
` 1q´1

q

Notice that the first proportionality comes from the application of Bayes’ rule (normal

prior and Bernoulli likelihood), whereas the second follows form the fact that ra1,1 P t0, 1u

and that p1 ´ Φpθxa1qq “ Φp´θxa1q. If we set γ “ 0, ξ “ 0, Σ “ 1, ∆ “ p2ra1,1 ´
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1qxa1px
2
a1
` 1q´1{2 and Γ “ px2

a1
` 1q´1 ` ∆2 “ 122 and Φpγ; Γq “ Φp0; 1q “ 1{2. This

means that

ppθ | xa1 , ra1,1q 9 φpθq
Φp∆θ; 1´∆2q

Φp0; 1q

which is the kernel of a unified skew-normal. In other words, pθ | xa1 , ra1,1q „ SUN1,1p0, 1, p2ra1,1´

1qxa1px
2
a1
` 1q´1{2, 0, 1q. Figure 8 shows how the variations of ra1,1 and xa1 influence the

shape of the unified skew-normal density function. Note that when xa1 “ 0, then ∆ “ 0

and the distribution is a standard normal. If the response of the arm is positive (ra1,1 “ 1),

then the density is skewed towards the right for positive values of the real line, and towards

the left for negative ones. If instead ra1,1 “ 0, the opposite happens.

Figure 8: Probability density function of a SUN1,1p0, 1, p2ra,1 ´ 1qxapx
2
a ` 1q´1{2, 0, 1q

Theorem 5 generalizes the conjugacy property under a generic history Ht´1 with θ P

Rp. For a proper proof, see Durante (2019)23.

Theorem 5. Let Ht´1 “ pXt´1, rt´1q be the history observed up to the beginning of time

t. If @a P A Ppra “ 1 | θq “ ΦpxT
a θq holds with θ „ N pξ,Σq as a prior, then

pθ | Xt´1, rt´1q „ SUNp,t´1tξ,Σ, Σ̄σS
TD´1{2, D´1{2Sξ, D´1{2

pSΣST
`It´1qD

´1{2
u, (5.2)

22 px2a1 ` 1q´1 ` p2ra1,1 ´ 1q2
loooooomoooooon

“1

x2a1px
2
a1 ` 1q´1 “ px2a1 ` 1q´1 ˆ px2a1 ` 1q “ 1

23 Note that the notation reported here is slightly different than that presented in the published version
of Durante (2019). In particular, it corresponds to an earlier unpublished version of the paper.
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where S “ diagt2ra1,1 ´ 1, . . . , 2rat´1,t´1 ´ 1uXt´1 P Rt´1ˆp and D “ diagtsT1 Σs1 `

1, . . . , sTt´1Σst´1 ` 1u P Rt´1ˆt´1
` . Note that sTi is the ith row of S, and It´1 P Rt´1ˆt´1 is

an identity matrix.

In terms of density function, the distribution in equation 5.2 is such that

ppθ|Xt´1, rt´1q “ φppθ ´ ξ; Σq

śt´1
s“1 Φpp2ras,s ´ 1qxT

asθq

Φt´1pSξ;SΣST ` It´1q
, (5.3)

where Φp¨q, Φp¨; ¨q and φpp¨; ¨q have the usual meaning. Notice that the product in the

numerator is the probit likelihood for the observed rewards.

Thompson Sampling can elegantly exploit such a conjugacy property to acquire i.i.d.

samples directly from the SUNp,t´1. The best way to do so is by exploiting a convenient

property of the unified skew-normal which states that, for every p and t´1, the distribution

in (5.3) can be rewritten as a linear combination of a p-variate normal distribution, and a

t´1-variate truncated normal distribution. Then, it is sufficient to draw one sample from

the normal, one from the truncated normal and compute a linear combination among these

two samples. Following Durante (2019), we call such a sampler as independent additive

sampler. In particular, this technique relies on the following corollary, which is a direct

modification of the result in Azzalini and Capitanio (2014), chapter 7. Recalling that,

given a generic vector η P Rn, the term N`
η pa, Aq denotes a generic n-variate truncated

normal with mean a, correlation matrix A and truncation from below η, it holds that:

Corollary 1. Let pθ | Xt´1, rt´1q „ ppθ | Xt´1, rt´1q as in equation (5.2). Then

pθ | Xt´1, rt´1q
d
“ ξ ` ΣtV0 ` S

T
pSΣST

` It´1q
´1D1{2V1qu (5.4)

where

(i) V0 „ Npp0p,Σ
´1 ´ STpSΣST ` It´1q

´1Sq , a p-variate normal distribution

(ii) V1 „ N`

´D´1{2Sξ
p0t´1, D

´1{2pSΣST` It´1qD
´1{2q, a pt´1q-variate truncated normal,

with truncation below ´D´1{2Sξ
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Finally, given the results listed so far, we are able to implement point 5 in algorithm 10

by simply exploiting the conjugacy property of the probit regression with normal priors.

Algorithm 12 reports the technical details of the independent additive sampler.

Algorithm 12 Independent Additive Sampler for the unified skew-normal posterior (Du-
rante, 2019) with M “ 1 pulls

1: Prior Input: θ „ Nppξ,Σq
2: Fix t P t1, . . . T u
3: Ht´1 “ pXt´1, rt´1q P Rt´1 ˆ Rpt´1qˆp Ź Observed History
4: if t “ 1 then Ź Sample from the Prior
5: @g P t1, . . . , Gu sample θ

pgq
t „ Nppξ,Σq

6: else
7: S Ð diagt2ra1,1 ´ 1, . . . , 2rat´1,t´1 ´ 1uXt´1

8: D Ð diagtsT
a1

Σsa1 ` 1, . . . , sT
at´1

Σsat´1 ` 1u
9: for all g P t1, . . . , Gu do

10: Sample V
pgq

0 „ Npp0p,Σ
´1 ´ STpSΣST ` It´1q

´1Sq

11: Sample V
pgq

1 „ N`

´D´1{2Sξ
p0t´1, D

´1{2pSΣST ` It´1qD
´1{2q

12: θ
pgq
t “ ξ ` ΣtV

pgq
0 ` SpSΣST ` It´1q

´1D´1{2V
pgq

1 u

13: end for

Given the availability of a closed form posterior, we can easily replicate the same

reasoning presented for the simple beta-binomial Thompson Sampling. By increasing the

number of observations (that is, the number of rows in Xt´1), the variance of the draws

from the posterior decreases significantly. In other words, the posterior concentrates

around a certain value for each parameter. Figure 9 mirrors the comparison scheme

proposed in figure 4. Assume that, in our fractional factorial framework, we have a 2-

arms test-bed, with a single binary variable xa that equals 1 if the selected arm is 1, and

0 if not. The probit regression is then

Pprat,t “ 1 | α, βq “ Φpα ` βxatq.

In other words, the probability of success of arm 1 is Φpα ` βq, and the one of arm 2

is Φpαq, and the generic sth row of the matrix Xt´1 is the vector p1, xasq. For the sake

of simplicity, rows in Xt´1 have been generated randomly, with an equal probability of

selecting arm 1 and arm 2. In particular, in the left panel matrix Xt´1 is made up by

10 rows only, whilst in the right one by 100. We have set α “ ´0.5 and β “ 0.5 as
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true values for the parameters, so that Φpα ` βq “ 0.5 and Φpαq « 0.3. Notice that

the draws from the posterior under few observations are widespread across the whole

probability space. In other words, Thompson Sampling estimates that arm 1 and arm 2

have an almost equal probability of being the best arm. The situation changes when the

number of observations increases: the draws start concentrating around the true values

for the probability of success, and Thompson Sampling starts allocating its pulls with a

probability vector that is unbalanced towards arm 1.

Figure 9: Success probabilities of arm 1 (horizontal ax) and arm 2 (vertical ax) resulting
form 1000 draws from the posterior distribution in 5.4 with t ´ 1=10 (on the left), and
t ´ 1 “ 100 on the right. Real success probability come from the probit regression
Pprat,t “ 1 | α, βq “ Φpα ` βxaq, with xat “ 1 if the selected arm is 1, and 0 otherwise.
True values of α and β are set to ´0.5 and 0.5, so that Ppr1,t “ 1 | α, βq “ Φpα`βq “ 0.5
and Ppr2,t “ 1 | α, βq “ Φpαq « 0.3. Red points indicate that the draws from the posterior
estimate a higher probability of success for arm a1, blue points the opposite. The sequence
of pulls is drawn at random, with an equal probability of choosing arm 1 or arm 2.

As already stated before, algorithm 12 is a tool that requires a twofold sampling: one

sample from a p-variate normal, and another from a pt ´ 1q-variate truncated normal.

Besides the conjugacy property, the main advantage of the algorithm is that the result-

ing samples are independent by definition, which is not guaranteed with other sampling

methods (Durante, 2019). A careful reader might have already noticed how this type of

sampling procedure strongly depends on the dimensions of Xt´1. Indeed, while p is con-

stant throughout the bandit experiment, t´1 keeps on increasing by definition. If we were
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to apply such an algorithm to a real business scenario, we would face significant issues

right form the start of our experiment (roughly when t ´ 1 ě 1000). The reason is that,

though theoretically unquestionable, sampling from a generic n-variate truncated normal

becomes either very slow when n is small-to-medium, and computationally intractable

when n is large. Indeed, the most efficient way to sample i.i.d. values from a multivariate

truncated normal is to use the accept-reject algorithm of Botev (2017)24, which becomes

slow in high dimensions. If we were to estimate the posterior a few times only, this time

requirement would be bearable. However, the bandit experiment requires to sample from

the posterior after every trial t. As we will see in the results section below, this sampling

effort does not justify the performance increase that derives from the conjugacy property,

especially when compared to the standard Gibbs sampling technique of Albert and Chib

(1993). In the following subsection we present a primer solution to this problem, which

still relies on the unified skew-normal posterior but sequentially approximates it under

large t. In this way, the resulting algorithm ensures both a high performance in terms of

regret and a significant reduction in the completion time.

5.2 Sequential Monte Carlo

A useful solution to the Bayesian updating in problems where the data stream-in at

different times is to adapt ideas from Sequential Monte Carlo (Doucet et al., 2010). In

particular, our goal is to sample from the posterior of θ at a generic time t by re-drawing

the previously produced samples at t´ 1 with probabilities depending on the information

provided by the new data available at t. Let again Xt´1 be the feature matrix at the

beginning of time t (before the arm is selected), rt´1 the associated response vector, xat

the feature vector of the arm selected at time t and rat,t its usual response in the case of

M “ 1. Then, rt “ pr
T
t´1, rat,tq

T and Xt “ rX
T
t´1,xats

T. Suppose now that at time t we

have drawn pθ
pgq
t q

G
g“1 i.i.d. samples from ppθ | Xt´1, rt´1q. These samples are often called

24 Botev (2017) algorithm can be applied simply by calling in R the package TruncatedNormal. However,
the equivalent version of such algorithm in Python does not exists yet, so that it is only possible to
sample from the univariate truncated normal. As the codes for this thesis are deveoped in Python, the
solution applied consisted on calling the R commands from Python using the package rpy2. See the
codes section in the appendix.
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particles in the Sequential Monte Carlo literature. Note that these particles are always

drawn in order to select arm at, which means that rat,t has not yet been observed. Then,

the posterior at time t (prior to the observation of rat,t) can be approximated via

p̂Gpθ | Xt´1, rt´1q “
1

G

G
ÿ

g“1

δ
θ
pgq
t
, (5.5)

where δθpgq is the delta-Dirac mass located at θpgq. As always, our goal is to update the

posterior ppθ | Xt´1, rt´1q with the reward rat,t that follows form the selection of arm

at. Adapting Sequential Monte Carlo ideas, one approach is to use the distribution in

equation (5.5) as an approximate prior when applying Bayes’ rule. In particular, the

update that comes from the choice of at and the observation of rat,t can be written as

ppθ | Xt, rtq 9 pprt | θ,Xtqppθq

9 pprt´1, rat,t | θ,Xt´1,x
T
atqppθq

9 pprat,t, | x
T
at ,θqpprt´1 | θ,Xt´1qppθq

9 pprat,t, | x
T
at ,θqppθ | Xt´1, rt´1q. (5.6)

Notice that the first line in the equation follows form the fact that ppθ | Xtq “ ppθq (the

parameters in the probit regression do not depend on the features of the selected arms).

The third line in the equation instead follows from the fact that the reward at time t

is conditionally independent from both the reward at previous times and the previously

selected arms. In other words, equation (5.6) points out that the posterior at the end of

trial t (after rat,t has been observed) can be obtained by updating the posterior at the

beginning of time t with the associated reward rat,t itself. But then, as the rewards are

Bernoulli distributed, it holds that

pprat,t | x
T
at ,θq “ ΦpxT

atθq
rat,tp1´ ΦpxT

atθqq
1´rat,t

“ Φpp2rat,t ´ 1qxT
atθq,
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and, following equation (5.5), the posterior at the beginning of t can be approximated via

Monte Carlo as

ppθ | rt´1,Xt´1q « p̂Gpθ | rt´1,Xt´1q “
1

G

G
ÿ

g“1

δ
θ
pgq
t
.

These two results can be easily exploited to approximate the updated posterior distribu-

tion (or, equivalently, the posterior distribution at the beginning of time t`1) in equation

(5.6). Specifically,

ppθ | rt,Xtq 9„

G
ÿ

g“1

δ
θ
pgq
t

Φpp2rat,t ´ 1qxT
atθ

pgq
t qq

9„

G
ÿ

g“1

δ
θ
pgq
t

Φpp2rat,t ´ 1qxT
atθ

pgq
t q

řG
g“1 Φpp2rat,t ´ 1qxT

atθ
pgq
t q

9„

G
ÿ

g“1

δ
θ
pgq
t
π
pgq
t , (5.7)

where for every g, π
pgq
t “

Φpp2ratt´1qxT
at
θ
pgq
t q

řG
g“1 Φpp2rat,t´1qxT

at
θ
pgq
t q

. Note that the approximate proportionality

that results from the sum of particles allows us to normalize the values that come from

the likelihood (the second line in the equation above). In other words, we are re-writing

the posterior we have to sample from at the beginning of time t ` 1 as a sum of the

particles drawn at t, weighted by the likelihood. As a consequence, in order to choose

at`1, the samples pθ
pgq
t`1q

G
g“1 from the posterior at the beginning of time t` 1 can either be

directly sampled from ppθ | Xt, rtq, or from the approximate posterior in equation (5.7).

In this last case, it will be sufficient to compute the importance weights π
pgq
t and use

them to resample the particles θ
pgq
t drawn from ppθ | Xt´1, rt´1q , which act, here, as an

approximate prior. Such a reasoning in particular assigns higher weights to the particles

for which the value of Φpp2rat,t ´ 1qxT
atθ

pgq
t q is high.

The fundamental advantage of this approach is that is requires only the calculation of

the sampling weights by evaluating cumulative distribution functions of univariate nor-

mals. This benefit overcomes the previous computational bottlenecks of sampling from

t-variate truncated normals. However, it relies on discrete approximations of the target
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distributions which may deteriorate as the resampling technique progresses with t (Zhou

et al., 2018). To partially address this issue we combine this scalable routine with the

proposed i.i.d. sampler from the SUNp,t´1 posterior in algorithm 12. In particular, we

propose to set a cut-off period t̄ at the beginning of the experiment, such that for the

time periods t ă t̄ the algorithm samples directly from the SUNp,t´1 via algorithm 12,

and then it applies the re-sampling approach to the draws produced by the i.i.d. sampler

at t̄ until the end of the experiment. In such a way, we consider an i.i.d sampler from

the exact posterior during the first trials, and then switch to an approximate sampler

when the posterior becomes more concentrated and, typically, easier to approximate in a

reliable way. Algorithm 13 summarizes the procedures described so far.

Algorithm 13 Sequential Monte Carlo Sampler

1: Prior Input: θ „ Nppξ,Σq
2: Fix t, t̄ P t1, . . . T u
3: Ht´1 “ pXt´1, rt´1q P Rt´1 ˆ Rpt´1qˆp Ź Observed History
4: if t ă t̄ then
5: @g P t1, . . . , Gu sample θ

pgq
t „ SUNp,t´1 via algorithm 12

6: else

7: Compute πt “ pπ
pgq
t q

G
g“1, where π

pgq
t “

Φpp2rat,t´1qxT
at
θ
pgq
t q

řG
g“1 Φpp2rat,t´1qxT

at
θ
pgq
t q

8: Draw G samples with replacement from pθ
pgq
t q

G
g“1 using πt as sampling weights

Note that, in the case of multiple pulls within the same trial period t, the sampling

weights can be easily computed as

π
pgq
t “

śM
s“1 Φpp2rast ,t ´ 1qxT

ast
θ
pgq
t q

řG
g“1

śM
s“1 Φpp2rast ,t ´ 1qxT

ast
θ
pgq
t q

, (5.8)

where M is the number of observations in the batch at time t´1 and prast ,tq
M
s“1 is the reward

sequence associated to the selection of arms pastq
M
s“1. The essential advantage of such a

procedure is its speed and its computational simplicity. The main disadvantage however is

that the best resampling cutoff needs to be carefully tuned in order to balance accuracy in

the approximation and computational scalability. The following section is dedicated to the

empirical comparison of all the bandit algorithms listed so far in a simulated environment,

which allows to clearly highlight the main advantages and drawbacks of algorithm 13.
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5.3 Empirical Comparison

Let our arms in A have a factorial structure. In particular, suppose that they are the

result of a combination of three different features: one with 2, one with 3 and one with

5 levels. Then, the resulting number of arms is 30, with a total number of parameters in

equation (4.9) equal to 8 (constant included). Following Scott (2010), we independently

generate the true values for the parameters at random from a normal distribution at the

beginning of each simulation. In particular, the constant follows a normal distribution

with mean Φ´1p0.05q and variance equal to 0.1, while all the other parameters are normally

distributed with mean 0 and variance 0.25. Then, the resulting mean success probability

of every arm is around 0.05, with a standard deviation of around 0.8 on the probit scale.

Figure 10 reproduces the true success probability schedule for one simulated environment

with the features listed so far.

Figure 10: True success probabilities of the 30 arms in one simulated environment of the
fractional factorial structure.

In general, such a configuration produces one or two arms that clearly stand out in

terms of true success probability, whereas the others have a success rate that concentrates

around 0.05. Figure 11 reports the results of 40 simulations carried over the 30-arms

test-bed described above, with M “ 1 pulls allocated each time t. Specifically, every

subfigure consists of a series of box-plots (one for each t) which allow to monitor the

behavior of the algorithms under every simulated environment. In particular, panel (a)
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and (b) test the performance of the annealing ε-greedy in algorithm 2 and the annealing

Softmax in algorithm 4 with gεptq “ gτ ptq “ 1{
?
t. Panel (c) instead shows the results

obtained by the UCB Tuned (algorithm 6), and panel (d) the ones resulting from the

beta-binomial RPM with 5000 samples drawn from the posterior at each trial and with

uniform prior over the probability of success of every arm. Finally, panels (e) to (f)

illustrate the Fractional Factorial Thompson Sampling (FFTS for short) in algorithm

10 with the different methods listed to sample from the posterior and a N p0, 1q prior

over each parameter: Albert and Chib (1993) Gibbs sampler (panel (e), algorithm 11),

Durante (2019) Independent Additive Sampler (panel (f), algorithm 12), and Sequential

Monte Carlo sampler with cutoffs at t̄ “ 0 and at t̄ “ 200 (algorithm 13). Each algorithm

computes the best arm probability vector wt by relying on 5000 samples at each trial

(with a burn-in of 2000 in the Gibbs sampler).

The graphs clearly point out two aspects. First, accounting for a fractional factorial

structure in the bandit environment improves the performance in terms of per-period

regret. The reason is simple: by including external features we are borrowing information

across the different arms, rather than estimating their success probabilities separately (8

parameters to estimate as opposed to 30 means). In particular, panel (a) to (d) exhibit

box-plots with a rather large width and long whiskers throughout the whole horizon.

This happens mainly due to the fact that T “ 400 and K “ 30 do not allow for a proper

assessment of the probability of success of every arm, and thus for a proper exploitation.

On the other hand, whiskers at t close to the end of the horizon in panels (e), (f) and

(h) are shorter and more compressed around zero, with only a few outliers above 0.2.

In other words, in more than 3/4 of the simulated environments, the fractional factorial

Thompson Sampling achieves a per-period regret below 0.1. This means that, when it

does not correctly identify the best arm, it still allocates its pulls on a sub-optimal arm

whose success probability is slightly lower than the actual best arm.
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(a) Annealing ε-greedy (b) Annealing Softmax

(c) UCB Tuned (d) Beta-Binomial Thompson Sampling

(e) FFTS via Gibbs Sampler (f) FFTS via Independent Additive Sampler

(g) FFTS via Sequential Monte Carlo, cutoff at t̄ “ 0 (h) FFTS via Sequential Monte Carlo, cutoff at t̄ “ 200

Figure 11: Per-period regrets over 40 simulations of the 30-arms test-bed with normally
distributed parameters.

The second fundamental aspect of figure 11 concerns the difference between the per-

formance of the four fractional factorial Thompson Sampling algorithms. As could be
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expected, sampling directly form a unified skew-normal posterior throughout the whole

horizon is the best choice: as t increases, the median per-period regret quickly reaches 0,

while the length of the box-plots decreases progressively. Albert and Chib (1993) Gibbs

sampler has a similar performance, albeit a slight higher number of outliers and longer

whiskers. This is due to the fact that, unlike the proposed i.i.d. sampler from the exact

posterior, the Gibbs algorithm is an MCMC which may suffer from mixing and conver-

gence issues affecting the quality of the inference. Finally, in the case of panels (g) and (h)

it is clear how applying the approximate re-sampling strategy from the beginning leads

to a poor performance. On the other hand, a resampling cutoff at t̄ “ 200 allows for a

proper learning of the parameters in the probit regression, so that the particles drawn

from the posterior are precise enough to identify the best arm in the majority of the

environments. This is due to the fact that the particles at t̄ “ 200 are i.i.d. samples from

the exact unified skew-normal posterior, whereas with a cutoff at t̄ “ 0, the particles at

t “ 200 come from a sequential re-sampling of draws from the prior distribution. While

the median in this last case is slightly above 0, the time needed to conclude the bandit

experiment significantly decreases. This generates a sort of trade-off : while the quality of

the particles coming from the exact SUN additive sampler increases with t̄, so it does the

computational burden required to sample from t̄-variate truncated normals under such

an i.i.d. additive sampler. Then, if t̄ is set early, the algorithm is subject to a high risk

of getting stuck on suboptimal arms. If instead t̄ is high, such a risk is lower, but the

associated computational effort significantly reduces its applicability over real business

scenarios. Finally, if t̄ is too high, the algorithm may even fail to reach the end of the

horizon.

Figure 12 summarizes this trade-off by showing the cumulative regret density resulting

from the 40 simulations (left panel) and the average completion time in seconds (right

panel) of the four sampling methods for the posterior in the fractional factorial Thompson

Sampling. Notice that the mean of each distribution is approximately the same (roughly

25 conversions over 400 trials). However, the mass of the pure Sequential Monte Carlo is

widespread across the real line. Though being efficient in term of elapsed time, such a low
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Figure 12: Cumulative regret density at the end of the bandit experiment (T “ 400)
and average completion time across 40 simulated environment of the 4 fractional factorial
algorithms in figure 11

resampling cutoff leads to more uncertain results. The most interesting aspects emerge

however if we look at the other three methods. The cumulative regret distribution re-

sulting from Albert and Chib (1993) Gibbs sampler is rather similar to the one resulting

from the independent additive sampler, while their associated completion time in seconds

is significantly different. In particular, the elapsed time of the Gibbs sampler increases

almost linearly with t. The reason is rather simple: at every new trial, the number of uni-

variate truncated normals to sample from increases by one, but the overall computational

complexity of the sampling procedure remains equal25. The independent additive sampler

instead performs surprisingly better than the Gibbs sampler within the first trials, but

becomes inefficient after t reaches 300. Part of this initial efficiency comes from the fact

that we have set a burn-in of 2000 particles for the Gibbs Sampler, which increase its

sampling cost in terms of time. Moreover, algorithm 13 avoids the data augmentation

step typical of the Gibbs sampler, and the computational complexity of sampling from

p-variate normal is limited when p is small-to-medium. However, if the experiment have

had a longer horizon, the overall advantages of the pure independent additive sampler

would have faded quickly. Finally, as could be expected, the average completion time of

the independent additive sampler with the Sequential Monte Carlo starting at t̄ “ 200

25 The time required to draw one sample from the univariate truncated normal with the Python command
scipy.stats.truncnorm.rvs() is always the same irrespective of the given parameters.
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quickly reaches 0 seconds per trial after the cutoff26. This computational efficiency still

comes with a risk of getting stuck on sub-optimal arms, as can be seen from the three

modes of the cumulative regret distribution. If by chance the algorithm fails to correctly

learn the true best arm before the resampling cutoff, then it will resample from “bad”

particles only and thus would not be able to later refine the learning properly. Indeed,

Sequential Monte Carlo updating has the inconvenient issue that, after a while, the par-

ticles in the process all identify one arm as the best one, irrespective of the associated

reward. But then, the further the trial t ą t̄ is from t̄, the lower the chances are that

the algorithm explores different arms (which is the core idea behind bandit algorithms).

In other words, repeated re-sampling makes the algorithm blind. To see this, look at the

behavior of the outliers and of the whiskers in panel (g): after a while, the per-period

regret becomes constant. This means that all the re-sampled particles identify one or

two arms as best arm and assign to the others a probability of being selected equal to

zero, but such identification does not change in the case of negative responses. Finally, a

Sequential Monte Carlo approach has the further issue that there is no clear rule behind

the number of particles to use in the resampling process (Zhou et al., 2018), and the

optimal resampling cutoff t̄ needs proper tuning.

26 Note that in this particular experiment, the average seconds per trial of this last algorithm are lower
than the corresponding pure independent additive sampler even before the resampling cutoff. However,
as the number of simulations is somehow low and the algorithms are identical before t̄, the increased
efficiency must be attributed to chance alone.
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6 Conclusions

This thesis has reviewed the major algorithms that fall within the category of bandit prob-

lems, which are an effective solution to the widespread exploration-exploitation dilemma.

The first part of the thesis has been devoted to the presentation and application of the

foundational frequentist bandits: the ε-greedy, the Softmax and the UCB. The second

part instead tackled the problem from a Bayesian perspective and main aspects of the

Thompson Sampling algorithm (equivalently referred as randomized probability match-

ing), both in its simple beta-binomial formulation, and in its fractional factorial one. In

particular, this last formulation, first presented in Scott (2010), has been improved by

applying the novel conjugacy result in Durante (2019), which allows for i.i.d. sampling

from the exact posterior without data augmentations. All the above algorithms have been

tested over a K-armed stochastic bandit environment with Bernoulli distributed rewards.

In all simulations, arms were assumed to have a fixed and time-invariant probability of

success. Such a situation is rather uncommon in real business applications, but still, we

could assume it to be true if the experiments were carried within a short period of time.

After several comparisons and testing over different bandit environments, we can conclude

that there is a priori no algorithm that works more efficiently than others, except the

fractional factorial one (which however exploits more information on the arms). In fact,

the efficiency of every algorithm is always strictly context related: as the true success

probability distribution changes, so does the relative performance of the algorithms. In

this respect, the most emblematic difference can be found on the the per-period regret of

the Softmax algorithm in figure 3 and in figure 11, panel (b). When the process according

to which we generate the true probabilities of success changed, the Softmax shifts from

the best performing to the worst one, even though the number of arms remains equal.

Thus, the application of a bandit algorithm in the real business world should require,

whenever possible, a careful offline tuning period.

In the last part of the analysis, we have considered the fractional factorial Thompson

Sampling. While being theoretically convenient, such an algorithm has had a limited

applicability due to its computational bottlenecks. To solve them, we have first applied
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the unified skew-normal posterior result in Durante (2019), and then a Sequential Monte

Carlo approach. The resulting algorithm, which balances the theoretical advantages of

the conjugacy property with the computational speed of the resampling algorithms is a

first attempt to expand the applicability of Thompson Sampling within the context of

real business scenarios, and further work is needed to improve scalability without pay-

ing excessive costs in terms of accuracy. In this respect, future research directions will

include a refinement of the Sequential Monte Carlo procedure, and an approximation of

the unified skew-normal with Variational Bayes methods.

68



References

Agrawal, S. and Goyal, N. (2011), Analysis of thompson sampling for the multi-armed

bandit problem. arXiv:1111.1797.

Albert, J. H. and Chib, S. (1993), ‘Bayesian analysis of binary and polychotomous re-

sponse data’, Journal of the American Statistical Association 88(422), 669–679.

Arellano-Valle, R. B. and Azzalini, A. (2006), ‘On the unification of families of skew-

normal distributions’, Scandinavian Journal of Statistics 33(3), 561–574.

Audibert, J.-Y., Munos, R. and Szepesvari, C. (2009), ‘Exploration-exploitation trade-

off using variance estimates in multi-armed bandits’, Theoretical Computer Science

410(19), 1876–1902.

Auer, P., Fischer, P. and Kivinen, J. (2002), Finite-time analysis of the multiarmed bandit

problem, in ‘Machine Learning’, Vol. 47, pp. 235–256.

Azzalini, A. and Capitanio, A. (2014), The Skew-Normal and Related Families, Cambridge

University Press.

Berry, D. A., Chen, R. W., Zame, A., Heath, D. C. and Shepp, L. A. (1997), ‘Bandit

problems with infinitely many arms’, The Annals of Statistics 25(5), 2103–2116.

Botev, Z. I. (2017), ‘The normal law under linear restrictions: simulation and estima-

tion via minimax tilting’, Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 79(1), 125–148.

Bubeck, S. and Cesa-Bianchi, N. (2012), Regret Analysis of Stochastic and Non-Stochastic

Multi-Armed Bandit Problems, NOW the Essence of Knowledge.

Bush, R. R. and Mosteller, F. (1953), ‘A stochastic model with applications to learning’,

The Annals of Mathematical Statistics 24(4), 559–585.

Cesa-Bianchi, N. and Fischer, P. (1998), Finite-time regret bounds for the multiarmed

bandit problem, in ‘In 5th International Conference on Machine Learning’, pp. 100–108.

69



Cesa-Bianchi, N. and Lugosi, G. (2006), Prediction, Learning, and Games, Cambridge

University Press.

Chapelle, O. and Li, L. (2011), An empirical evaluation of thompson sampling, in ‘Pro-

ceedings of the 24th International Conference on Neural Information Processing Sys-

tems’, NIPS’11, Curran Associates Inc., pp. 2249–2257.

Chopin, N. and Ridgway, J. (2017), ‘Leave pima indians alone: Binary regression as a

benchmark for bayesian computation’, Statistical Science 32(1), 64–87.

Doucet, A., Freitas, N. D. and Gordon, N. (2010), Sequential Monte Carlo Methods in

Practice, Springer.

Durante, D. (2019), ‘Conjugate bayes for probit regression via unified skew-normals’,

Biometrika (in press.) .

Frost, R. (1916), The road not taken, in ‘Mountain Interval’, Henry Holt.

Gelfand, A. E. and Smith, A. F. (1990), ‘Sampling based approaches to calculating

marginal densities’, Journal of the American Statistical Association 85(410), 398–409.

Gittins, J. C. (1989), Multi-armed Bandit Allocation Indices, Wiley.

Hoffman, M. D. and Gelman, A. (2014), ‘The no-u-turn sampler: Adaptively setting path

lengths in hamiltonian monte carlo’, Journal of Machine Learning Research 15, 1593–

1623.

Kaufmann, E., Cappe, O. and Garivier, A. (2012), On bayesian upper confidence bounds

for bandit problems, in N. D. Lawrence and M. Girolami, eds, ‘Proceedings of the

Fifteenth International Conference on Artificial Intelligence and Statistics’, Vol. 22 of

Proceedings of Machine Learning Research, PMLR, pp. 592–600.

Kuleshov, V. and Precup, D. (2000), ‘Algorithms for the multi-armed bandit problem’,

Journal of Machine Learning Research 1(1), 1–48.

70



Lai, T. and Robbins, H. (1985), ‘Asymptotically efficient adaptive allocation rules’, Ad-

vances in Applied Mathematics 6(1), 4–22.

Lattimore, T. and Szepesvari, C. (2018), Bandit Algorithms, Cambridge University Press.

Li, L., Chu, W., Langford, J. and Schapire, R. E. (2010), A contextual-bandit approach

to personalized news article recommendation, in ‘Proceedings of the 19th international

conference on World wide web - WWW 10’.

Roberts, G. O. and Rosenthal, J. S. (2001), ‘Optimal scaling for various metropolis-

hastings algorithms’, Statistical Science 16(4), 351–367.

Russo, D. J., Roy, B. V., Kazerouni, A., Osband, I. and Wen, Z. (2018), ‘A tutorial on

thompson sampling’, Foundations and Trends in Machine Learning 11(1), 1–96.

Scott, S. L. (2010), ‘A modern bayesian look at the multi-armed bandit’, Applied Stochas-

tic Models in Business and Industry 26(6), 665–667.

Scott, S. L. (2015), ‘Multi-armed bandit experiments in the online service economy’,

Applied Stochastic Models in Business and Industry 31(1), 37–45.

Sutton, R. S. and Barto, A. G. (1998), Reinforcement Learning: an Introduction, MIT

Press.

Thompson, W. R. (1933), ‘On the likelihood that one unknown probability exceeds an-

other in view of the evidence of two samples’, Biometrika 25(3/4), 285.

Urteaga, I. and Wiggins, C. H. (2018), Bayesian bandits: balancing the exploration-

exploitation tradeoff via double sampling. arXiv:1709.03162v2.

Vernade, C., Carpentier, A., Zappella, G., Ermis, B. and Bruckner, M. (2018), Contextual

bandits under delayed feedback. arXiv:1807.02089.

White, J. M. (2013), Bandit Algorithms for Website Optimization, OReilly.

Whittle, P. (1988), ‘Restless bandits: activity allocation in a changing world’, Journal of

Applied Probability 25(A), 287–298.

71



Zhou, Y., Zhu, J. and Zhuo, J. (2018), Racing thompson: an efficient algorithm for

thompson sampling with non-conjugate priors, in ‘Proceedings of the 35th International

Conference on Machine Learning’, Vol. 80, pp. 6000–6008.

72


	Introduction
	The Bandit Environment
	Frequentist Strategies
	Greedy strategies
	Upper Confidence Bound strategies
	Sub-gaussian random variables
	UCB1 and UCB-Tuned


	Thompson Sampling
	Binomial Thompson Sampling
	Randomized Probability Matching
	Difference between RPM and Softmax allocation rules
	Difference between RPM and pure Thompson Sampling

	Fractional Factorial Thompson Sampling
	Posterior approximation via Gibbs sampling 


	Advances in Fractional Factorial Thompson Sampling
	The unified skew-normal and the Independent Additive Sampler
	Sequential Monte Carlo
	Empirical Comparison

	Conclusions

