
Ecological Modeling via Bayesian Nonparametric
Species Sampling Priors

by

Alessandro Zito

Department of Statistical Science
Duke University

Date:
Approved:

David B. Dunson, Supervisor

Peter Hoff

Mike West

James Clark

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Statistical Science

in the Graduate School of Duke University
2023



Abstract

Ecological Modeling via Bayesian Nonparametric Species

Sampling Priors

by

Alessandro Zito

Department of Statistical Science
Duke University

Date:
Approved:

David B. Dunson, Supervisor

Peter Hoff

Mike West

James Clark

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Statistical Science

in the Graduate School of Duke University
2023



Copyright © 2023 by Alessandro Zito
All rights reserved except the rights granted by the

Creative Commons Attribution-Noncommercial Licence

http://creativecommons.org/licenses/by-nc/3.0/us/


Abstract

Species sampling models are a broad class of discrete Bayesian nonparametric pri-

ors that model the sequential appearance of distinct tags, called species or clusters,

in a sequence of labeled objects. Over the last 50 years, species sampling priors

have found much success in a variety of settings, including clustering and density

estimation. However, despite the rich theoretical and methodological developments,

these models have rarely been used as tools by applied ecologists, even though their

primary investigation often involves the modeling of actual species. This disserta-

tion aims at partially filling this gap by elucidating how species sampling models

can be useful to scientists and practitioners in the ecological field. Our emphasis is

on clustering and on species discovery properties linked to species sampling mod-

els. In particular, Chapter 2 illustrates how a Dirichlet process mixture model with

a random precision parameter leads to greater robustness when inferring the num-

ber of clusters, or communities, in a given population. We specifically introduce a

novel prior for the precision, called Stirling-gamma distribution, which allows for

transparent elicitation supported by theoretical findings. We illustrate its advan-

tages when detecting communities in a colony of ant workers. Chapter 3 presents

a general Bayesian framework to model accumulation curves, which summarize the

sequential discoveries of distinct species over time. This work is inspired by tradi-

tional species sampling models such as the Dirichlet process and the Pitman–Yor

process. By modeling the discovery probability as a survival function of some la-
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tent variables, a flexible specification that can account for both finite and infinite

species richness is developed. We apply our model to a large fungal biodiversity

study from Finland. Finally, Chapter 4 presents a novel Bayesian nonparametric

taxonomic classifier called BayesANT. Here, the goal is to predict the taxonomy of

DNA sequences sampled from the environment. The difficulty of such a task is that

the vast majority of species do not have a reference barcode or are yet unknown to

science. Hence, species novelty needs to be accounted for when doing classification.

BayesANT builds upon Dirichlet-multinomial kernels to model DNA sequences, and

upon species sampling models to account for such potential novelty. We show how

it attains excellent classification performances, especially when the true taxa of the

test sequences are not observed in the training set. All methods presented in this

dissertation are freely available as R packages. Our hope is that these contributions

will pave the way for future utilization of Bayesian nonparametric methods in applied

ecological analyses.
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Introduction

Species sampling models (Pitman, 1996) are a broad class of Bayesian discrete non-

parametric priors that model the sequential appearance of distinct tags, called clus-

ters or distinct species, in a sequence of labeled objects. Since the introduction

of their arguably most famous member, the Dirichlet process, around 50 years ago

(Ferguson, 1973), species sampling priors have been thoroughly investigated from a

theoretical standpoint as models for random partitions and have found much success

in a variety of applied mixture modeling settings, like regression analysis, hierarchi-

cal modeling, density estimation, clustering, and community detection to name a

few. These rich theoretical and applied developments, however, have rarely appealed

to ecologists, whose primary scientific investigation often revolves around the mod-

eling of actual species and their behavior in nature at large. In this dissertation,

we describe some theoretical, methodological, and applied Bayesian nonparametric

contributions that we hope will both be of independent interest to statisticians in the

field, and also open a path towards a broader use of species sampling model-based

methods among practitioners in applied ecological settings.

Our first contribution is presented in Chapter 2, which focuses on species sampling
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priors from a mixture modeling perspective. In particular, we study how Dirichlet

process mixtures are crucially sensitive to the choice of the so-called precision pa-

rameter. Our goal is to show how randomization of the precision through the use

of a prior leads to greater robustness in inferential procedures, especially in terms of

the posterior number of clusters estimated from the data. However, common choices

of priors, such as the gamma distribution (Escobar and West, 1995), do not allow for

transparent elicitation due to a lack of analytical results. For this reason, we intro-

duce the novel Stirling-gamma prior, which makes the distribution of the number of

clusters analytically tractable. Our theoretical investigation clarifies the reasons for

the improved robustness. For instance, the number of clusters in a Dirichlet process

with a Stirling-gamma prior on the precision follows approximately a negative bino-

mial distribution, whereas a fixed precision leads to a Poisson-type behavior instead.

Under specific choices of its hyperparameters, the Stirling-gamma has the important

property of being conjugate to the law of the random partition of a Dirichlet pro-

cess. This is particularly useful in applied settings where inference on the partition

is of primary interest. We illustrate the above advantages in a community detection

problem, where our goal is to infer the number of communities within a colony of

ants from networks of individual ant-to-ant interactions.

In Chapter 3, we present a novel Bayesian methodology to model accumulation

curves, which express the count of “new” species discovered as a function of the num-

ber of individuals observed. Specifically, it is of great interest for ecologists to both

correctly fit the “in-sample” behavior of the curve, or rarefaction and to predict the

“out-of-sample” trajectory, or extrapolation, which amounts to estimating the num-

ber of new additional species that would be observed if more samples were collected.

Extrapolating the curve to infinity yields an estimate of the species richness, namely

the total number of distinct species that live in a location. Our method is inspired

by traditional species sampling models, such as the Dirichlet (Ferguson, 1973), the
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Pitman–Yor (Pitman and Yor, 1997) and the Dirichlet-multinomial processes (Per-

man et al., 1992). Unfortunately, these models are either not sufficiently flexible for

rarefactions and extrapolations or only admit an infinite number of species asymp-

totically. To deal with these issues, we introduce a Bayesian framework where the

probability of discovering a new species at any given time is modeled through a sur-

vival function of a chosen latent random variable. The resulting law for the accumu-

lation curve is a Poisson-binomial distribution, which allows for simple in- and out-

of sample estimators, and both finite and infinite species richness depending on the

shape of the survival function. We specifically focus on a three-parameter log-logistic

class of survival functions, which includes the Dirichlet process discovery probability

as a special case and whose parameters can be estimated via a constrained logistic

regression. We test our proposal on data collected from a large fungal biodiversity

study in Finland (Abrego et al., 2020).

Chapter 4 illustrates how species sampling models can be used as a building

block to develop powerful classification tools when the true labels in the test set

are not observed in training. Such a problem frequently arises in DNA barcoding

tasks (Somervuo et al., 2017), which are often used to quantify biodiversity in a

given area. Indeed, modern taxonomic identification methods leverage upon existing

libraries of DNA barcodes to automatically annotate DNA sequences collected from

field experiments. However, these libraries are often incomplete, as many species are

unknown to science or do not have a reference barcode. Thus, the taxonomic novelty

of a sequence needs to be accounted for when doing classification. To solve the issue,

we develop BayesANT, a Bayes ian N onparametric taxonomic classifier, which uses

species sampling model priors to allow new taxa to be discovered at each taxonomic

rank. Using a simple product multinomial likelihood with conjugate Dirichlet priors

at the lowest rank, a highly efficient algorithm is developed to provide a probabilis-

tic prediction of the taxa placement of each sequence at each rank. BayesANT is
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shown to have excellent performance when many sequences in the test set belong to

unobserved taxa.

All the research presented in this dissertation has received funding from Project

Lifeplan1, whose aim is to map the current state of biodiversity across the globe.

Every Chapter is co-authored with David B. Dunson and Tommaso Rigon, with the

addition of Otso Ovaskainen for Chapter 3. As our overarching goal is to broaden the

application of Bayesian nonparametric tools in ecology, much software was developed

in R to facilitate usage2. A sampler for the Stirling-gamma distribution of Chapter 2

is available in the ConjugateDP package. Codes to perform all models described in

Chapter 3 can be found in the BNPvegan package. The taxonomic classification algo-

rithm of Chapter 4 is available in the BayesANT package. Proofs for the statements

and additional simulation studies are presented in Appendix A, B and C.

1 Lifeplan is funded by the European Research Council under the European Union’s Horizon 2020
research and innovation programme (grant agreement No 856506).

2 All code is publicly available in GitHub at https://github.com/alessandrozito
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2

Bayesian nonparametric modeling of latent
partitions via Stirling-gamma priors

2.1 Introduction

Discrete Bayesian nonparametric priors have been thoroughly investigated in recent

decades motivated by their wide applicability in model-based clustering and den-

sity estimation problems. Suppose Y1, . . . , Yn are n observations taking values on

Y and fpy | xq is a density function on the same space, indexed by x. Then, a

Bayesian nonparametric mixture model is defined through the following hierarchical

representation

Yi | Xi
ind
„ fp¨ | Xiq, Xi | p̃

iid
„ p̃, p̃ „ Q, pi “ 1, . . . , nq, (2.1)

whereX1, . . . , Xn are latent random variables inX, p̃ is a discrete random probability

measure and Q represents its prior. Some notable instances of prior laws Q include

the Pitman–Yor process (Perman et al., 1992; Pitman and Yor, 1997), Gibbs-type

priors (Gnedin and Pitman, 2005; De Blasi et al., 2015), and normalized random

measures with independent increments (Regazzini et al., 2003). Arguably, the most

popular and widely employed discrete nonparametric prior is the Dirichlet process
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introduced by Ferguson (1973), due to its simplicity and analytical tractability.

The discreteness of p̃ induces a clustering of the observations by generating ties

among the latent variables. More precisely, there will be Kn “ k distinct values

among X1, . . . , Xn, which partitions the statistical units t1, . . . , nu into k clusters,

say C1, . . . , Ck. Hence, two statistical units i and i1 belong to the same cluster,

say the jth, if i, i1 P Cj or, equivalently, if Xi “ Xi1 . Moreover, we will say that

Πn “ tC1, . . . , Cku is the random partition induced by p̃. In a Dirichlet process

mixture model, the law of such a random partition Πn is

PpΠn “ tC1, . . . , Cku | αq “
αk

pαqn

k
ź

j“1

pnj ´ 1q!, (2.2)

where α ą 0, with pαqn “ αpα ` 1q ¨ ¨ ¨ pα ` n ´ 1q being the ascending factorial,

and with nj “ |Cj| being the number of elements in cluster Cj, so that
řk

j“1 nj “

n. The quantity α is called precision parameter and, together with the sample

size n, governs the law of the partition and the number of clusters Kn. In our

motivating application, we rely on such a random partition mechanism to infer the

latent communities in a colony of ant workers. Specifically, we model individual ant-

to-ant interaction networks via stochastic block models (Nowicki and Snijders, 2001),

which are a variant of the mixture model in (2.1). See Kemp et al. (2006); Geng

et al. (2019); Legramanti et al. (2022) for other applications of discrete nonparametric

priors in community detection tasks.

It has been pointed out by several scholars that Dirichlet process mixtures are

particularly sensitive to the precision parameter (Escobar, 1994; Lijoi et al., 2007b;

Booth et al., 2008). For instance, different values of α can lead to dramatically

different posterior distributions of Kn, even when sufficient cluster separation is

present in the data. Such a lack of robustness is problematic when the posterior

partition is of inferential interest, such as in clustering and community detection.
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Figure 2.1: Left panel: 800 data points from a four-component mixture of normals.
Center panel: probability mass function of the prior distribution ofKn under different
choices of α. Parameters were set to have EpKnq “ 7.26 and EpKnq “ 25.9 in low
and high cases, respectively, with α “ 1 and α “ 5 in the fixed cases. Right panel:
posterior distribution of Kn estimated from the data via a Dirichlet process mixture.
See Addendum II for details.

As we illustrate in Figure 2.1 with a simulated example, randomizing the precision

through the use of a prior πpαq can attenuate this unpleasant behavior. Here, fixing

α “ 1 as opposed to α “ 5 causes the posterior mode of Kn to shift from four to

eight clusters, even if the data are generated from a mixture with four well-separated

components. On the contrary, allowing α to be random induces more flexibility in

the prior for Kn, and in turn, yields two posterior distributions that are similar to

each other even when the means in the priors for α are far apart.

The most common choice of πpαq is the gamma distribution (Escobar and West,

1995). However, gamma priors lead to an analytically intractable prior over the

partition. This prevents transparent elicitation of the prior hyperparameters and

complicates the inclusion of available prior information on the clustering structure of

the data. Moreover, while it has been shown that the distribution of Kn arising from

a Dirichlet process can be approximated with a Poisson distribution when α is fixed,

no such approximation is available for the random α case. We aim at filling this gap

by introducing a novel prior over the Dirichlet process precision that (i) is simple and

easily sampled from, (ii) makes the induced prior on Kn analytically tractable and
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(iii) leads to an approximate negative binomial prior on the number of clusters. Our

proposed prior for α has a novel distribution, which we refer to as Stirling-gamma,

due to its connection with Stirling numbers and the gamma distribution. Under an

appropriate logarithmic rescaling, the Stirling-gamma is equivalent to the gamma in

a limiting case.

When α follows a Stirling-gamma prior, we will say that the random partition is

from a Stirling-gamma process. This belongs to the larger class of Gibbs-type par-

tition models, which are discrete nonparametric priors that enjoy several appealing

theoretical properties. See for instance De Blasi et al. (2015). We provide several

distributional results for the Stirling-gamma process. In particular, we show that the

hyperparameters have an interpretable link with the induced law for the partition

and the associated number of clusters. The resulting negative binomial-type behavior

of the Stirling-gamma process, as opposed to the Poisson-type one of the Dirichlet

process, helps explain the greater robustness of mixture models with random α.

The Stirling-gamma has the further fundamental advantage of being the conju-

gate prior to the law of the random partition of the Dirichlet process if one of its

hyperparameters equals n. This happens because the distribution in equation (2.2)

belongs to the class of natural exponential families, which always admit a conjugate

prior (Diaconis and Ylvisaker, 1979). We illustrate how this conjugacy result further

facilitates both posterior inferences on α and prior elicitation. The consequences of

the prior dependency on n are thoroughly discussed. In particular, we show how the

Stirling-gamma can be a useful prior when modeling independently repeated parti-

tions of the same n statistical units, such as the ant worker interaction networks of

our illustrative application.

The Chapter is organized as follows. Section 2.2 formally introduces the species

sampling framework and presents the Stirling-gamma process. Section 2.3 focuses

on the conjugate Stirling-gamma prior, while Section 2.4 shows the community de-
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tection application. Section 2.5 contains concluding remarks. The two additional

Addendum Sections contain results on the Stirling-gamma coefficients, and details

on the simulation in Figure 2.1. Proofs for the statements and details on the sampler

for the Stirling-gamma are presented in Appendix A, which also includes an addi-

tional simulation study. To sample from the Stirling-gamma distribution, refer to

the function rSg in the ConjugateDP package.

2.2 Distribution theory for Stirling-gamma processes

2.2.1 Background

Before introducing the Stirling-gamma distribution and the related process, we pro-

vide a probabilistic background on partition models that will be useful throughout

the paper. Suppose that the latent variables Xi in model (2.1) belong to an infinite

exchangeable sequence pXnqně1 and that they live in a complete and separable metric

space X endowed with a Borel sigma-algebra BpXq. The species sampling models

introduced by Pitman (1996) provide a broad class of discrete nonparametric priors,

defined as p̃ “
ř8

j“1 p̃jδξj with
ř8

j“1 p̃j “ 1. Here, δx is the Dirac measure at x,

while the ξjs are drawn independently from a non-atomic baseline distribution P0 on

BpXq and are also independent from the random weights p̃j. Since the realizations

of a species sampling model are almost surely discrete, we have PpXi “ Xi1q ą 0 for

any i ‰ i1. As such, the latent variables X1, . . . , Xn will take on Kn “ k distinct

values, called X˚
1 , . . . , X

˚
k , with frequencies n1, . . . , nk and

řk
j“1 nj “ n. This induces

a random partition of the statistical units t1, . . . , nu into groups C1, . . . , Ck, where

Cj “ ti : Xi “ X˚
j u for j “ 1, . . . , k. Traditionally, X˚

1 , . . . , X
˚
k are also referred to

as distinct species thanks to the metaphor discussed in Pitman (1996). Hence, we

talk about species sampling models.

There exists a rich variety of exchangeable priors to model the random partition

mechanism generating the clusters C1, . . . , Ck. See Ghosal and van der Vaart (2017)
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for an extensive account. Among them, Gibbs-type processes (Gnedin and Pitman,

2005; De Blasi et al., 2015) form a particularly rich class. We say that the law of p̃

is of Gibbs-type if

PpΠn “ tC1, . . . , Ckuq “ Vn,k

k
ź

j“1

p1 ´ σqnj´1, (2.3)

where σ ă 1 and the coefficients Vn,k satisfy the forward recursion Vn,k “ pn ´

σkqVn`1,k ` Vn`1,k`1 for all k “ 1, . . . , n and n ě 1, with V1,1 “ 1. Equation (2.3)

is the so-called exchangeable partition probability function of the process (Pitman,

1996). This depends on the cluster frequencies through a product structure, which

implies that Gibbs-type priors are a special instance of product partition models

(Hartigan, 1990; Barry and Hartigan, 1992; Quintana and Iglesias, 2003). A detailed

list of examples of models that follow equation (2.3) is presented in Appendix B. The

coefficients Vn,k determine the system of predictive equations of the random partition

Πn, that is

PpXn`1 P A | X1, . . . , Xnq “
Vn`1,k`1

Vn,k
P0pAq `

Vn`1,k

Vn,k

k
ÿ

j“1

pnj ´ σqδX˚
j

pAq, (2.4)

for n ě 1 and every A P BpXq. The pn` 1qst latent parameter Xn`1 is drawn from

the baseline P0 with probability Vn`1,k`1{Vn,k, and is equal to one of the previous X˚
j

with probability Vn`1,k`1pnj ´σq{Vn,k. Specifically, sampling Xn`1 from the baseline

automatically generates a new cluster, or a new species, due to the diffuse nature

of P0. Refer to De Blasi et al. (2015) for an overview, and to Chapter 3 for an

interpretation of such mechanism for an applied ecological perspective.

When σ “ 0 and Vn,k “ αk{pαqn in equation (2.3), one recovers the exchangeable

partition probability function of a Dirichlet process in equation (2.2). A more robust

specification can be obtained by introducing a prior for α. In this case, the resulting

10



distribution is

PpΠn “ tC1, . . . , Ckuq “ Vn,k

k
ź

j“1

pnj ´ 1q!, Vn,k “

ż

R`

αk

pαqn
πpαqdα, (2.5)

which has more flexibility through varying the hyperparameters of πpαq. Gnedin and

Pitman (2005) show that every Gibbs-type prior with σ “ 0 is uniquely characterized

by equation (2.5). Commonly adopted priors πpαq, such as the gamma distribution

proposed by Escobar and West (1995), do not lead to an analytically tractable form

for Vn,k. This is a crucial point because Vn,k are the key quantities that determine

the distribution of the number of clusters, that is

PpKn “ kq “ Vn,k|spn, kq|, pk “ 1, . . . , nq, (2.6)

where |spn, kq| are the signless Stirling number of the first kind (Charalambides,

2005). Refer to Antoniak (1974) and Gnedin and Pitman (2005) for derivations.

Thus, our goal is to develop a prior whose hyperparameters have a clear and inter-

pretable link with the distribution of Kn in equation (2.6). In what follows, we show

how this can be achieved using a Stirling-gamma prior.

2.2.2 The Stirling-gamma distribution

In this Section, we introduce the Stirling-gamma distribution and describe its prop-

erties.

Definition 1. A positive random variable follows a Stirling-gamma distribution with

parameters a, b ą 0 and m P N satisfying 1 ă a{b ă m, if its density function is

ppαq “
1

Sa,b,m

αa´1

tpαqmub
, Sa,b,m “

ż

R`

αa´1

tpαqmub
dα.

We will write α „ Sgpa, b,mq.
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The name of the Stirling-gamma distribution stems from the presence of the as-

cending factorial in the density function, whose polynomial expansion defines Stirling

numbers of the first kind (Charalambides, 2005), and the following connection with

the gamma distribution.

Proposition 2. Let α „ Sgpa, b,mq. Then, the following convergence in distribution

holds:

α logm Ñ γ, γ „ Gapa ´ b, bq, m Ñ 8.

In the above statement, Gapa0, b0q denotes the gamma distribution with mean

a0{b0 and variance a0{b
2
0. Proposition 2 has two fundamental implications. The first

is that the density of the Stirling-gamma Sgpa, b,mq progressively resembles that of

Gapa ´ b, b logmq as m becomes larger. The second is that α Ñ 0 in probability as

m Ñ 8 with a logarithmic rate of convergence via a direct application of Slutzky’s

theorem. Both properties are illustrated in Figure 2.2, which displays the probability

density function of the two distributions for varying values of m and b when a “

5. In particular, high values for a{b require a larger m to make the two densities

indistinguishable. Both distributions progressively shift towards zero as m increases.

However, the right tail of the Stirling-gamma is heavier than the one of the gamma

because it is a heavy-tailed distribution. We provide a formal proof in Appendix A.

The density function of a Stirling-gamma is proper, namely Sa,b,m ă 8, if only

if 1 ă a{b ă m, as shown in Appendix A. Interestingly, the normalizing constant

Sa,b,m is the key to calculating the moments of the distribution, which are obtained

as follows.

Proposition 3. Let α „ Sgpa, b,mq and suppose that 0 ă s ă mb ´ a. Then

Epαs
q “

Sa`s,b,m

Sa,b,m

.
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Figure 2.2: Probability density function of a Stirling-gamma Sgpa, b,mq, depicted
by the solid lines, and a Gapa´ b, b logmq, indicated by the dashed lines, for varying
values of m and b, and a “ 5.

When s ą mb´ a, instead, then one has Epαsq “ 8. In general, explicit analytic

expressions for the moments are not available. One possibility is to approximate

Sa,b,m and, consequently, Epαsq via Monte Carlo integration since samples from the

Stirling-gamma can be drawn efficiently; see the Supplementary material. Alter-

natively, when m is large, we have that Epαq “ Sa`1,b,m{Sa,b,m is roughly equal to

pa{b ´ 1q{ logm and that Sa,b,m « pb logmqa´b{Γpa ´ bq by means of Proposition 2.

Also, in the special instance where a, b P N, we can express Sa,b,m analytically as an

alternating sum of logarithms, as shown in Theorem 12 in the Appendix.

2.2.3 Random partitions via Stirling-gamma priors

When the precision parameter of a Dirichlet process follows a Stirling-gamma dis-

tribution α „ Sgpa, b,mq, we have a Stirling-gamma process. As described in Sec-

tion 2.2.1, this is a member of the Gibbs-type family with σ “ 0. Thus, the associ-

ated exchangeable partition probability function is readily available from the results

of Gnedin and Pitman (2005).

Theorem 4. The exchangeable partition probability function of a Stirling-gamma
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process with α „ Sgpa, b,mq is

PpΠn “ tC1, . . . , Ckuq “
Va,b,mpn, kq

Va,b,mp1, 1q

k
ź

j“1

pnj ´ 1q!,

where the coefficients are equal to

Va,b,mpn, kq “

ż

R`

αa`k´1

tpαqmubpαqn
dα.

It is easy to see that the Gibbs-type coefficients are Vn,k “ Va,b,mpn, kq{Va,b,mp1, 1q,

for k “ 1, . . . , n and n ě 1, with V1,1 “ 1, and that the forward recursion is satisfied

since Va,b,npn, kq “ nVa,b,npn`1, kq`Va,b,npn`1, k`1q. Relying on similar reasoning

as the one used for prior coefficients in Definition 1, we can also derive an explicit

analytical form for Va,b,mpn, kq when a, b P N. We show this in Theorem 14 in

Addendum I, which, combined with Theorem 12, implies that Vn,k can be expressed

as ratios of alternating sums of logarithms after noticing that Va,b,mp1, 1q “ Sa,b,m.

By being a genuine Gibbs-type prior, the Stirling-gamma process admits an urn

scheme representation of the form in equation (2.4). In particular, the latent variables

pXnqně1 abide the following generative mechanism:

PpXn`1 P A |X1, . . . , Xnq “
Va,b,mpn`1, k`1q

Va,b,mpn, kq
P0pAq`

Va,b,mpn`1, kq

Va,b,mpn, kq

k
ÿ

j“1

njδX˚
j

pAq,

(2.7)

for n ě 1 and for every A P BpXq. The fundamental difference between the pre-

dictive scheme in equation (2.7) and the one arising from the generic distribution

in (2.5) lies in the fact that the hyperparameters of the Stirling-gamma prior are

interpretable in terms of the induced number of clusters in the latent partition. We

elucidate this with the following key result.

14



Theorem 5. Let α „ Sgpa, b,mq and Da,b,m “ Et
řm´1

i“0 α2{pα` iq2u. The number of

clusters Km obtained from the first m random variables X1, . . . , Xm generated from

the predictive scheme in equation (2.7) is distributed as

PpKm “ kq “
Va,b,mpm, kq

Va,b,mp1, 1q
|spm, kq|, (2.8)

for k “ 1, . . . ,m, with mean and variance equal to

EpKmq “
a

b
, varpKmq “

b ` 1

b

´a

b
´ Da,b,m

¯

.

In Section 2.2.4 we further show that Da,b,m « 1 for m large enough. The above

statement suggests that hyperparameters a, b and m have an important meaning:

when α „ Sgpa, b,mq, the firstm statistical units t1, . . . ,mu arising from the Stirling-

gamma process identify a{b clusters on average, with variance inversely related to

b. For this reason, we can refer to m as a hypothetical reference sample size, a{b

as a location, and b as a precision. Theorem 5 also provides an explicit motivation

for why the hyperparameters of the Stirling-gamma must satisfy 1 ă a{b ă m as in

Definition 1: having a{b “ 1 is equivalent to having EpKmq “ 1, which corresponds

to a Dirichlet process where α Ñ 0. On the contrary, setting a{b “ m leads to

EpKmq “ m, meaning that every observation identifies a new cluster. This is the

case of a Dirichlet process where α Ñ 8. Setting 1 ă a{b ă m avoids both degenerate

behaviors.

The results in Theorem 5 hold exclusively at the mth sample from the Stirling-

gamma process. For arbitrary fixed values of a, b and m the distribution of the

number of cluster Kn is given in equation (2.6), whose moments are not avail-

able in closed form. It is well known that the number of clusters Kn arising at

a generic nth draw from the predictive scheme in equation (2.7) maintains the log-

arithmic divergence typical of the Gibbs-type processes with σ “ 0. This is because
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Kn{ log n Ñ α „ Sgpa, b,mq in distribution as n Ñ 8, as discussed in Pitman (1996).

On the other hand, one key aspect of Theorem 5 is that the expectation of the num-

ber of clusters among X1, . . . , Xm, obtained from equation (2.7), is independent of

m. Indeed, it will be shown in Section 2.2.4 that the distribution of Km provided in

equation (2.8) converges to a finite discrete random variable as m Ñ 8. This is a

consequence of Proposition 2 and the diverging nature of Kn discussed above: while

Kn diverges at a logarithmic rate in n, the Stirling-gamma prior makes α approach

zero logarithmically in m. The two rates perfectly compensate each other when the

observed sample size n reaches the reference sample size m.

2.2.4 Robustness properties

In this Section, we investigate the behavior of the number of clusters of the Stirling-

gamma process under a large reference sample size. Interestingly, if m itself is chosen

large, we are able to show that Km approaches a well-known distribution.

Theorem 6. Under the same assumptions of Theorem 5, the following convergence

in distribution holds:

Km Ñ K8, K8 „ 1 ` Negbin

ˆ

a ´ b,
b

b ` 1

˙

, m Ñ 8.

The negative binomial distribution in Theorem 6 is parametrized so that

EpK8q “
a

b
, varpK8q “

b ` 1

b

´a

b
´ 1

¯

.

Hence, the quantity Da,b,m defined in Theorem 5 converges to one when m Ñ 8.

Thus, Theorem 6 provides a reliable approximation for the prior distribution of the

number of clusters. The same result is maintained when α „ Gapa´b, b logmq. This

should not come as a surprise considering the asymptotic equivalence discussed in

Proposition 2.
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In view of the above Theorem, it is natural to draw a comparison between the

Stirling-gamma process and the Dirichlet process. To mimic the behavior of α under

a Stirling-gamma prior, we study the number of clusters from a Dirichlet process at

the reference sample size m when α “ λ{ logm, with λ ą 0 being a positive constant.

The large m behavior is illustrated in the next Proposition, where Popλq denotes the

Poisson distribution with mean λ.

Proposition 7. Let X1, . . . , Xm be the first m realizations from a Dirichlet process,

obtained by setting Vn,k “ αk{pαqn and σ “ 0 in equation (2.4). If α “ λ{ logm for

some λ ą 0, then the following convergence in distribution holds:

Km Ñ K8, K8 „ 1 ` Popλq, m Ñ 8.

Similar Poisson-type behaviors for the number of clusters in the Dirichlet pro-

cess have already been shown in the literature. See for example Proposition 4.8 in

Ghosal and van der Vaart (2017). Theorem 6 and Proposition 7 suggest a theoretical

reason for why a Dirichlet process with random precision is more flexible than the

fixed precision counterpart. When α is kept fixed and sufficiently small, the number

of clusters is approximately distributed as a Poisson, whose mean and variance are

uniquely controlled by one parameter. On the contrary, choosing a Stirling-gamma

prior with large m induces an approximately negative-binomial prior for Kn, lead-

ing to much greater robustness to the prior expectation for Kn, as illustrated in

Figure 2.1.

2.3 Conjugate inference under Stirling-gamma priors

In this Section, we illustrate how the Stirling-gamma distribution has the further

important property of being conjugate to the law of the partition of the Dirichlet

process. As we show in Proposition 8, this happens when the reference sample size

m is set equal to the number of data points n in equation (2.2).
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Proposition 8. Suppose we observe a partition Πn distributed according to the

Dirichlet process in (2.2) and let α „ Sgpa, b, nq. Then,

pα | Πn “ tC1, . . . , Ckuq „ Sgpa ` k, b ` 1, nq.

The same result can be derived by conditioning on Kn “ k alone as in Escobar

and West (1995) because of its sufficiency for α. The above conjugacy simplifies

computations when sampling from the posterior distribution in a Dirichlet process

mixture model with random precision, which in the case of the gamma prior requires

a data augmentation step. Under the conjugate Stirling-gamma prior, elicitation is

straightforward by virtue of Theorems 5 and 6. Thus, one can transparently tune

the Stirling-gamma prior by leveraging upon information available on the clustering

structure of the n observations through choices of a and b.

The existence of the conjugate Stirling-gamma prior follows directly from the

results of Diaconis and Ylvisaker (1979) for natural exponential families, which the

partition law of the Dirichlet process is a member of. Nevertheless, the prior depen-

dency on n has some important consequences on the process, which must be handled

with care. In particular, while the distribution in Theorem 4 remains the one of

a finitely exchangeable product partition model, the Gibbs-type recursion charac-

terizing the coefficients Vn,k no longer holds. Namely, Vn,k ‰ nVn`1,k ` Vn`1,k`1.

This breaks the predictive scheme of equation (2.7), causing the sequence to lose the

projectivity property typical of species sampling models (Lee et al., 2013). In other

terms, the distribution in Theorem 4 under n observations does not coincide with the

one obtained by marginalizing out the pn ` 1qth sample from the same distribution

under n` 1 data points. This is a limitation when one is interested in extrapolating

inferences from a sample to the general population, but less so on clustering problems

where out-of-sample predictions are not the main focus (Betancourt et al., 2020).

The lack of projectivity of the sequence under m “ n, however, is less relevant in
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settings where n plays the role of the dimension of the data rather than the number

of observed data points. We illustrate this by introducing the following population

of partitions framework. Let Πn,1, . . . ,Πn,N denote N independent and identically

distributed realizations of a random partition of the same units t1, . . . , nu from an

exchangeable partition probability function. If each partition is from a Dirichlet

process with precision α, then we have

PpΠn,s “ tC1,s, . . . , Cks,su | αq “
αks

pαqn

ks
ź

j“1

pnj,s ´ 1q!, ps “ 1, . . . , Nq, (2.9)

where nj,s “ |Cj,s| is the number of elements in the jth cluster Cj,s within the sth

partition, and ks is the associated number of clusters. The model in equation (2.9)

is suitable for instances where, for example, we measure the interactions among the

same n nodes of a network multiple times. Similar data often occur in neuroscience

studies, where the same n brain regions are scanned for N different individuals

(Durante et al., 2017), or in ecology, where the interactions among n species are

recorded for N days (Mersch et al., 2013). The inferential goal of model (2.9) is to

retrieve the network-specific partition through a shared Dirichlet process precision

parameter. Then, the following Theorem holds.

Theorem 9. Let Πn,1, . . . ,Πn,N be independent and identically distributed realiza-

tions from equation (2.9). If α „ Sgpa, b, nq, then

pα | Πn,1, . . . ,Πn,Nq „ Sg

˜

a `

N
ÿ

s“1

ks, b ` N, n

¸

.

It is straightforward to notice that Proposition 8 is retrieved by letting N “

1 in the above. In light of Theorem 9, we can also derive the classic Bayesian

decomposition of the posterior mean as a weighted average between the observed

data and the prior. Recall that EpKn | αq “
řn´1

i“0 α{pα` iq is the conditional mean
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for the number of clusters generated by a Dirichlet process over partitions of the

units t1, . . . , nu, and that EpKnq “ EtEpKn | αqu “ a{b thanks to the law of the

iterated expectation. Then, the next Proposition holds.

Proposition 10. Under the same setting of Theorem 9, we have

E

˜

n´1
ÿ

i“0

α

α ` i
| Πn,1, . . . ,Πn,N

¸

“
b

b ` N

a

b
`

N

b ` N
k̄,

where k̄ “ N´1
řN

s“1 ks is the average number of clusters observed across the parti-

tions.

The above statement is a direct consequence of the conjugacy of the Stirling-

gamma prior under m “ n. See Diaconis and Ylvisaker (1979) and the Supplemen-

tary material for details.

Remark 11. There exists a rich variety of algorithms to sample from the posterior

distribution of the mixture model in (2.1). For Gibbs-type processes, one popular ap-

proach lies in the class of marginal samplers, which rely on the sequential predictive

scheme of equation (2.4). See Escobar and West (1995); Neal (2000) for examples.

In light of its hierarchical construction, inference under the Stirling-gamma process

mixture model can be performed under the same marginal scheme of the Dirichlet

process, with an additional sampling step for α. Such a step is provided by Proposi-

tion 8 or Theorem 9 depending on the setting. In both cases, the conditioning is with

respect to the last sampled partition at the given iteration.

2.4 Inferring communities in ant interaction networks

We now illustrate how modeling the precision parameter α via a Stirling-gamma

prior in a Dirichlet process mixture as opposed to keeping it fixed yields a more

robust estimate of the posterior partition. We specifically consider the problem of
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Day 2 Day 4 Day 6 Day 8

Figure 2.3: Binary ant-to-ant interaction networks in a colony Camponotus fellah
observed in four different days. Each node is an ant, and black points denote edges.
The colors on the left indicate the three groups of workers, namely foragers (dark
blue), cleaners (light blue), and nurses (orange). The bottom red node indicates the
queen.

detecting community structures in a colony of ant workers by modeling daily ant-to-

ant interaction networks via stochastic block models (Nowicki and Snijders, 2001).

The data were collected by Mersch et al. (2013) by continuously monitoring six

colonies of the ant Camponotus fellah through an automated video tracking system

over a period of 41 days. Each day yielded a weighted adjacency matrix whose edges

contain the number of individual interactions between workers. In this analysis, we

model a binary version of the data from days two, four, six, and eight for the fifth

colony (n “ 149), where Yi,j,s equals one if ant i and ant j in network s interacted

more than five times, and zero otherwise. In line with the setting proposed by

Theorem 9, we use the Stirling-gamma process to independently model the N “ 4

latent partitions of the same n “ 149 ants. Figure 2.3 reports the binary adjacency

matrices recording ant interactions. Rows and columns have been sorted according

to the three social organization groups retrieved by Mersch et al. (2013), namely

foragers, cleaners, and nurses. The last group is composed of younger individuals

and forms a stronger connection with the queen.

In order to perform community detection on each of the four networks, we rely

on a stochastic block model formulation. This is a variant of the mixture of equa-
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tion (2.1) of the Introduction, which is best rewritten with the help of auxiliary

variables representing cluster assignment as follows. Given a random partition of the

nodes Πn,s “ tC1,s, . . . , Cks,su in s, call Zi,s an auxiliary variable so that Zi,s “ h if

the node i P Ch,s, for i “ 1, . . . , n. The probability of detecting an edge between

nodes i and j in network s is specified as

PpYi,j,s “ 1 | Zi,s “ h, Zj,s “ h1, νq “ νh,h1,s, νh,h1,s „ Bep1, 1q. (2.10)

Here, νh,h1,s P ν “ pν1,1,1, . . . , q is the edge probability in the block identified by

clusters Ch,s and Ch1,s, and Bepa0, b0q is the Beta distribution with mean a0{pa0 `b0q.

We assume no node self-relation, thus ignoring the diagonal entries Yi,i,s. By modeling

the latent partition via the Dirichlet process prior PpΠn,s | αq as in equation (2.2),

we can flexibly find a grouping of the nodes with a similar edge distribution and thus

infer the number of ant worker communities without pre-specifying an upper bound

to the number of clusters. See Legramanti et al. (2022) and references therein for a

description of the posterior sampling algorithm.

Prior Posterior,  Day 2 Posterior,  Day 4 Posterior,  Day 6 Posterior,  Day 8

0 20 40 60 12 16 20 20 25 30 16 20 24 12 16 20 24

0.0

0.2

0.4

Number of clusters Kn

α Fixed, high Fixed, low Random, high Random, low

Figure 2.4: Prior and posterior distribution of the number of clusters detected in
the ant-to-ant binary interaction networks. Different colors refer to the four models
tested. “Fixed, low” (light blue) refer to case (i) when α “ 0.4. “Fixed, high”
(dark blue) is case (ii) when α “ 18. “Random, low” (light orange) is case (iii) with
α „ Sgp0.6, 0.2, 149q, and “Random, high” refer to case (iv) with α „ Sgp8, 0.2, 149q.

Our intent is to investigate the impact that different choices of α have on each

posterior partition from the model in equation (2.10). In particular, we compare
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a Dirichlet process mixture with (i) α “ 0.4 and (ii) α “ 18, against Stirling-

gamma processes with (iii) α „ Sgp0.6, 0.2, 149q, and (iv) α „ Sgp8, 0.2, 149q. The

hyperparameters in models (i) and (iii) are chosen such that EpKnq “ 3 so as to

incorporate the a priori knowledge of the three groups described by Mersch et al.

(2013). To check for posterior robustness, cases (ii) and (iv), instead, have EpKnq “

40. As is evident from the leftmost panel of Figure 2.4, the Stirling-gamma prior

enables additional vagueness to Kn as a direct consequence of choosing b “ 0.2. We

obtain the posterior partition in each model by running a collapsed Gibbs sampler as

in Legramanti et al. (2022) for 40,000 iterations, treating the first 10,000 as burn-in.

The full conditional for α in both Stirling-gamma processes is provided by Theorem 9,

setting N “ 4 and n “ 149. The resulting effective sample size for α in cases (iii)

and (iv) is 11, 932.22 and 19, 422.59, indicating good mixing. Figure 2.4 plots the

posterior distribution for the number of retrieved clusters Kn in each network. We

see that there exists a non-negligible difference between the two posteriors where α

is kept fixed, leading to under- and over-clustering in cases (i) and (ii), respectively.

On the contrary, making α random with a sufficiently vague Stirling-gamma prior

retrieves a virtually identical posterior irrespective of the induced prior on Kn. This

is due to the additional flexibility granted by the Stirling-gamma, which enables the

model to infer α from the data.
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Day 2 Day 4

Day 6 Day 8

Figure 2.5: Network representation of the inferred partition in the four networks
displayed in Figure (2.3). Nodes represent the retrieved clusters, with size determined
by the number of ants they contain. Colors reflect the composition of each cluster
according to the groups identified by Mersch et al. (2013): foragers (dark blue),
cleaners (light blue), and nurses (orange). The queen is indicated in red. We obtain
the node positions through force-directed placement (Fruchterman and Reingold,
1991). The width of the connections is determined by the posterior mean for the
estimated block probabilities νh,h1,s, ignoring the ones below 0.1 for aesthetic reasons.

To further investigate the communities retrieved by our model, we look at the

posterior obtained from the Stirling-gamma process in model (iii). As we can see

from Figure 2.4, the average number of clusters detected in each day is much larger

than the original grouping suggested by Mersch et al. (2013). As such, the stochastic

block model in equation (2.10) recovers a more complex ant organization than the

one originally proposed, effectively detecting worker sub-communities. Figure 2.5
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displays the posterior partitions obtained by minimizing the variation of information

metric leveraging on the approach of Wade and Ghahramani (2018). We observe

15, 21, 20, and 17 clusters on days 2, 4, 6 and 8, respectively. Such differences are

due to the within-day variability in worker interactions. However, the core structure

of the social organization remains similar across days, with the detection of sub-

communities uniquely characterized by nurses (in orange) and foragers (in dark blue).

Cleaners (in light blue) are instead co-clustered with the other two groups as they

play a fundamental role in handling the passage of information within the colony.

Finally, in each day we are able to detect the sub-community of nurses which interacts

the most with the queen.

2.5 Discussion

Our proposed Stirling-gamma prior was motivated by improving robustness to prior

choice and transparency in prior elicitation in Dirichlet process mixture models.

Fixing the precision parameter is a poor choice in most applications, since it implies

a highly informative prior for the induced number of clusters. While the usual

gamma prior can improve robustness to one’s prior guess for the number of clusters,

the implications of the gamma choice are unclear due to the lack of an analytically

tractable form for the induced partition prior. The Stirling-gamma has the dual

advantages of being heavier-tailed than the gamma, leading to improved robustness

to prior elicitation, while also being much more transparent in terms of the induced

clustering prior.

More broadly, the Stirling-gamma is of interest as a new heavy-tailed distribu-

tion having positive support. There are multiple other application areas in which

this new distribution may be useful. For example, the Stirling-gamma could be used

as the choice of exponential family distribution within a generalized linear model

framework when the common log-normal or gamma choices lack sufficiently heavy
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tails for the data at hand. Alternatively, noting that the Dirichlet distribution arises

by normalizing independent gamma random variables, one could obtain an alterna-

tive distribution on the probability simplex by normalizing Stirling-gamma random

variables. This new distribution may be ideal at characterizing the case in which

there are a small proportion of large probabilities with the remaining concentrated

near zero; a common desirable behavior for shrinkage priors on the simplex.

When the reference sample size m of a Stirling-gamma prior α „ Sgpa, b,mq

diverges, the total number of clusters generated from a Stirling-gamma process as

n Ñ 8 is negative binomial-distributed. In future work, it will be interesting to

study the relationship with models that choose a negative binomial prior directly

for the number of components in a finite mixture; refer, for example, to Miller and

Harrison (2018) and to the literature on Gibbs-type processes in which the number

of clusters is a finite random quantity (Gnedin and Pitman, 2005; De Blasi et al.,

2015).

2.6 Addendum I: Closed-form expressions for Stirling-gamma coeffi-
cients

We hereby show how the coefficients Sa,b,m and Va,b,mpn, kq introduced in Definition 1

and Theorem 4 admit an explicit form. These depend on complete exponential Bell

polynomials, which are defined as follows. Given the variables x1, . . . , xs for s ě 1,

the sth complete exponential Bell polynomial is

Bspx1, . . . , xsq “
ÿ

pi1,...,isqPIs

s!

i1!i2! ¨ ¨ ¨ is!

´x1
1!

¯i1 ´x2
2!

¯i2
¨ ¨ ¨

´xs
s!

¯is
, (2.11)

where Is is the set of all non-negative integers ti1, . . . , isu that satisfy the equality

constraint i1 ` 2i2 ` . . .` sis “ s. See Charalambides (2005) for details. To simplify
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readability, we also introduce the polynomials

Sb,jpx1, . . . , xbq “

b
ÿ

s“1

Bb´spx1, . . . , xb´sq

pb ´ sq!
ϕspjq, ϕspjq “

#

´ log j, s “ 1,

j1´s{ps ´ 1q s “ 2, 3, . . . ,

(2.12)

where B0px0q “ 1 and Bspx1, . . . , xsq is defined in equation (2.11). Then, the follow-

ing result holds.

Theorem 12. If a, b P N, then

Sa,b,m “

m´1
ÿ

j“1

p´1q
c̄`bj j c̄

tΓpjqΓpm ´ jqub
Sb,jphj,1, . . . , hj,bq,

where c̄ “ a ´ b ´ 1, Sb,j is defined in equation (2.12) and

hj,s “ ´pa ´ 1q
ps ´ 1q!

js
´ bps ´ 1q!pHm´j´1,s ´ Hj,sq,

with Hj,s “
řj

i“1 1{is being the jth generalized harmonic number of order s.

Notice that the expression above can be simplified when b “ 1, as in the following

Corollary.

Corollary 13. The normalizing constant when α „ Sgpa, 1,mq and a P N and m ě 3

is

Sa,1,m “

m´1
ÿ

j“1

p´1q
a`j ja´2 log j

ΓpjqΓpm ´ jq
.

By similar reasoning, we can derive an analytical expression also for the posterior

coefficients.
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Theorem 14. Let a, b P N and m ě 2, and call M “ mintn,mu and ℓ “ |n ´ m|.

Then it holds that

Va,b,mpn, kq “

M´1
ÿ

j“1

p´1q
k̄´jpb`1q j k̄

tΓpjqΓpM ´ jqub`1pM ´ jqℓ
Sb`1,jpgj,1, . . . , gj,b`1q

`

ℓ´1
ÿ

i“0

p´1q
k̄`i pM ` iqk̄

Γpi ` 1qΓpℓ ´ iqtpi ` 1qM´1ub`1
logpM ` iq,

where k̄ “ a ` k ´ b ´ 2, and

gj,s “ ´pa ` k ´ 1q
ps ´ 1q!

js
´ ps ´ 1q!tbHM´j´1,s ´ pb ` 1qHj,s ` bHM´j´ℓ´1,su.

2.7 Addendum II: Details of the simulation in Figure 2.1

The data in the left panel of Figure 2.1 consists of n “ 800 observations gener-

ated independently from a mixture of four equally weighted bivariate normal distri-

butions with variance-covariance matrix equal to diagt0.15, 0.15u and means equal

to p´1,´1q, p1,´1q, p´1, 1q and p1, 1q, respectively. We let Xi “ pµi,Σiq and

fpy | Xiq “ N2py;µi,Σiq in equation (2.1), with N2py,µ,Σq denoting a normal dis-

tribution with mean µ P R2 and variance-covariance matrix Σ P R2ˆ2. Our prior Q

is a Dirichlet process with precision parameter α and normal-inverse Wishart baseline

distribution Npµ;0,Σ{κ0qIW pΣ; ν0, Iq with κ0 “ ν0 “ 2. Four different scenarios are

considered with respect to α: “Fixed, low” sets α “ 1, “Random, high” sets α “ 5,

“Random, low” lets α „ Sgp0.73, 0.1q and “Random, high” lets α „ Sgp2.6, 0.1q. The

induced distribution on Kn has mean EpKnq “ 7.26 in low cases and EpKnq “ 26

in high ones. Inference on the number of clusters Kn in each scenario is performed

by running a marginal Gibbs sampler as in Algorithm 3 in Neal (2000) for 20,000

iterations, discarding the first 5,000 as burn-in.
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3

Bayesian modeling of sequential discoveries

3.1 Introduction

Our goal is to develop a flexible procedure for modeling the appearance of previously

unobserved objects in a sequence. The sequential recording of distinct entities can

be represented through an accumulation curve, namely the cumulative number of

distinct entities Kn within a collection of n objects (Christen and Nakamura, 2000;

Gotelli and Colwell, 2001). These entities can be of various nature, including biolog-

ical species (Good, 1953; Good and Toulmin, 1956), words (Efron and Thisted, 1976;

Thisted and Efron, 1987), genes (Ionita-Laza et al., 2009), bacteria (Hughes et al.,

2001; Gao et al., 2007) and cell types (Camerlenghi et al., 2020). The analysis of

accumulation curves has a rich history in statistics, as testified by the early contribu-

tions of Fisher et al. (1943), Good (1953), and Good and Toulmin (1956). We refer

to Bunge and Fitzpatrick (1993); Gotelli and Colwell (2001) for a historical account.

Several nonparametric approaches have been developed, aiming at i) predicting the

number of unseen entities (e.g. Shen et al., 2003), or ii) estimating the probability of

a new discovery (e.g. Chao and Shen, 2004; Mao, 2004; Favaro et al., 2012). Similar
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tasks have also been dealt with in parametric ways (e.g. Arrhenius, 1921; Soberon

and Llorente, 1993; Flather, 1996; Diaz-Frances and Gorostiza, 2002).

Our work is inspired by the class of Bayesian nonparametric methods called

species sampling models (Pitman, 1996), which were introduced in Chapter 2. In

one of our motivating applications, we aim to assess how many of the species present

in a sample are missed when a given number of DNA barcode sequences are obtained.

Let pXnqně1 be a sequence of objects, such as fungal DNA sequences in a single soil

or air sample (Abrego et al., 2020), taking values in X, which is the space of fungal

species. Among the first n observed objects X1, . . . , Xn, there will beKn ď n distinct

entities, or species, representing the nth value of the accumulation curve. The values

pXnqně1 are randomly generated in a sequential manner, so that the tag Xn`1 is

either new or equal to one of the previously observed objects. For instance, in the

Dirichlet process case, the sequential allocation mechanism for any n ě 1 proceeds

as:

pXn`1 | X1, . . . , Xnq “

#

“new”, with probability α{pα ` nq,

Xi, with probability 1{pα ` nq, pi “ 1, . . . , nq,

(3.1)

where α ą 0 controls the rate of new discoveries; see also Blackwell and MacQueen

(1973). We refer to the quantity α{pα ` nq as the discovery probability for the

Dirichlet process. See equation (2.2) for the distribution of the induced partition of

t1, . . . , nu.

The predictive scheme in (3.1) is restrictive in depending on a single parameter

and in inducing a logarithmic growth for the accumulation curve pKnqně1. These lim-

itations motivated the development of random processes with more flexible growth

rates. Notorious examples include the two parameter Poisson–Dirichlet process of

Perman et al. (1992), often called the Pitman–Yor process when the number of species

is assumed to be infinite or the Dirichlet-multinomial process in the finite case (Pit-
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man and Yor, 1997), and the general class of Gibbs-type priors (Gnedin and Pitman,

2005). Under these models, the labels pXnqně1 are exchangeable, meaning their order

of appearance is irrelevant for inferential purposes. While convenient, exchangeabil-

ity can be restrictive to obtain (Lee et al., 2013). For this reason, generalizations of

species sampling models that go beyond exchangeablility have been proposed (Berti

et al., 2004; Bassetti et al., 2010; Fortini et al., 2018; Cassese et al., 2019; Ascolani

et al., 2021), often admitting (3.1) as a special case. One flexible model is the beta-

gos process (Airoldi et al., 2014), where the allocation probabilities are functions of

independent beta random variables.

Bayesian species sampling models induce a distribution for Kn at every n, which

arises from a pure-birth inhomogeneous Markov process governed by the discovery

probabilities. As such, they are naturally endowed with in- and out-of-sample esti-

mators for the accumulation curve, EpKnq and EpKn`m | Kn “ kq, m ě 1. In line

with the ecological literature (e.g. Gotelli and Colwell, 2001), we refer to these as

model-based rarefaction and extrapolation estimators, respectively. For Pitman–Yor

and general Gibbs-type priors, extrapolations are available in closed form (Lijoi et al.,

2007a; Favaro et al., 2009). However, such models are often too restrictive, as is evi-

dent from Figure 3.1, which shows in- and out-of-sample performance in estimating

the number of distinct fungi species in a given number of fungal DNA-barcode se-

quences1. The Dirichlet process performs poorly in sample, while the Pitman–Yor

has good in-sample fit but inadequate out-of-sample predictive accuracy. This is not

surprising, as the Pitman–Yor process depends on only two parameters and assumes

that Kn Ñ 8 almost surely as n Ñ 8. As there are finitely many fungi species,

Kn should more realistically converge to a finite constant. Such is the case for the

Dirichlet-multinomial process, for which limnÑ8 Kn “ K8. However, its trajectory

1 Species are defined in this article based on genetic sequences being sufficiently distinct, but the
terminology used by ecologists is “operational taxonomic units” as determining species requires
additional verification.
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Figure 3.1: Empirical and estimated accumulation curve in one air fungal DNA-
barcoding sample from Finland. White dots indicate observed values. Left panel:
the vertical line is the training-test set cutoff, set to 1{3 of the total number of genetic
sequences. The parameters of the Dirichlet, Pitman–Yor and Dirichlet-multinomial
are estimated on the training set via empirical Bayes, while estimation for beta-gos
relies on method of moments. Right panel: the curves are estimated using the full
data. See the Supplementary Material for further details on model parametrizations.

has a similar lack of fit as the Dirichlet process. The beta-gos process admits both

K8 “ 8 and K8 ă 8 depending on the values of its parameters. Nonetheless, it

often shows similar out-of-sample behavior as the Pitman-Yor process. Potentially

one could use a predictive scheme that is more flexible than the Pitman–Yor, while

also allowing finiteK8; recent examples include Camerlenghi et al. (2018); Lijoi et al.

(2020). However, such specifications involve cumbersome combinatorial structures

in the sampling mechanism, effectively preventing their application in the types of

large datasets that are routinely collected in our motivating application areas. For

example, in fungi biodiversity studies, it is common to obtain DNA barcodes for

millions of sequences from 10,000s of species (e.g. Ovaskainen et al., 2020).

We address the above limitations through a novel modeling framework, which is

highly flexible, analytically tractable, and computationally efficient. The key distinc-
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tion compared to species sampling models, such as (3.1), is that we directly specify

a model for the accumulation curve pKnqně1, whereas the tags pXnqně1 are regarded

as nuisance parameters. Specifically, we consider a collection of Bernoulli random

variables pDnqně1 representing whether at the pn ` 1qth step a new entity has been

discovered or not, namely

PpDn`1 “ 1q “ PpXn`1 “ “new” | X1, . . . , Xnq

for n ě 1, having set D1 “ 1. The accumulation curve is obtained by summing

over these binary indicators: Kn “
řn

i“1Di, n ě 1. Differently from general species

sampling models, in our framework, the Bernoulli indicators pDnqně1 are assumed

to be independent, albeit not identically distributed. Hence, we aim at developing

suitable formulations for the probabilities pπnqně1, with πn “ PpDn “ 1q, for any

n ě 1. It is natural to require these probabilities to be decreasing over n, so that the

discovery of a new entity is increasingly difficult the more data we collect. Moreover,

π1 “ PpD1 “ 1q “ 1, since the first entity of the sequence is necessarily new. Both

requirements are satisfied by the Dirichlet process, where πn “ α{pα ` n ´ 1q. We

propose a general strategy for the specification of pπnqně1, relying on the notion

of survival functions, and study the impact of specific choices on the asymptotic

behavior of Kn.

A specific subclass of our framework is particularly appealing in terms of ana-

lytic and computational simplicity, due to connections with logistic regression. This

subclass includes the Dirichlet process and naturally leads to covariate-dependent

extensions. Existing covariate-dependent species sampling models are typically com-

plex to implement; refer to Quintana et al. (2022) for an overview. In contrast, our

approach simply involves implementing a constrained logistic regression. We illus-

trate the flexibility and computational tractability through application to data on

copepod and fungi biodiversity.
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The Chapter is organized as follows. Sections 3.2-3.3 introduce our modeling

framework, investigate the theoretical properties and describe a subclass of models

connected with logistic regression. Inferential strategies together with a solution to

order dependence are presented in Section 3.4. In Section 3.5 we test our model on

simulated scenarios. Section 3.6 details the applications to real datasets. Conclud-

ing remarks are given in Section 3.7. The proofs of the statement and additional

simulations are reported in Appendix B.

3.2 A general modeling framework for accumulation curves

3.2.1 Background on species sampling models

In this Section we review key concepts about species sampling models that will be

used throughout the paper. For a broader overview, refer to Pitman (1996) and De

Blasi et al. (2015). For generalizations that go beyond exchangeability, see Berti

et al. (2021).

Let pXnqně1 be a sequence of objects. Given the discrete nature of the data,

there will be ties among X1, . . . , Xn, comprising a total of Kn “ k distinct entities

X˚
1 , . . . , X

˚
k , having frequencies n1, . . . , nk, with

řk
j“1 nj “ n. Frequencies n1, . . . , nk

are referred to as abundances in the ecological literature (Gotelli and Colwell, 2001).

One generalization of the sequential allocation scheme of the Dirichlet process in (3.1)

is given by

pXn`1 | X1, . . . , Xnq “

#

“new”, with probability πn`1,

Xi, with probability qi,n`1, pi “ 1, . . . , nq,
(3.2)

for n ě 1, suitable probabilities
řn

i“1 qi,n`1 “ 1 ´ πn`1 and X1 “ “new”. For Gibbs-

type processes (Gnedin and Pitman, 2005), πn`1 and qi,n`1 depend on previous values

only through k and the frequencies n1, . . . , nk, respectively. One example is the

Pitman–Yor process, where πn`1 “ pα ` σkq{pα ` nq, qi,n`1 “ p1 ´ σn̄´1
i q{pα ` nq,
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for i “ 1, . . . , n, σ P r0, 1q and α ą ´σ, where n̄i is the frequency of the associated

tag Xi within the sample; the Dirichlet process is recovered with σ “ 0. Another is

the Dirichlet-multinomial, which has the same sampling scheme of the Pitman–Yor

but with σ ă 0 and α “ H|σ|, with H P N the total number of species. For the

above examples, the law of pXnqně1 is exchangeable, i.e. invariant to reordering of

the sequence, requiring strict conditions on qi,n`1 and πn`1 (Lee et al., 2013).

To relax exchangeability while maintaining certain desirable properties, Berti

et al. (2004) proposed conditionally identically distributed (cid) sequences. For cid

sequences, the labels Xn`m are identically distributed conditioned on X1, . . . , Xn

for n,m ě 1. Examples include generalized Poisson–Dirichlet and generalized Ot-

tawa sequences (gos; Bassetti et al., 2010), and gos sequences with latent beta

reinforcements (beta-gos; Airoldi et al., 2014). For beta-gos, the random allo-

cation probabilities are πn`1 “
śn

i“1Wi and qi,n`1 “ p1 ´ Wiq
śn

j“i`1Wj, where

Wn „ betapan, bnq are independent beta random variables for n ě 1. As we de-

scribe in Section 3.5, the values for an and bn determine the asymptotic behavior of

the sequence. The sequential mechanism in (3.2) induces a law for the accumulation

curve pKnqně1.

Let K
pnq
m denote the number of new entities in a future sample of size m con-

ditioning on training data X1, . . . , Xn. Under a Dirichlet process, both the prior

mean for the accumulation curve Km and the posterior mean for K
pnq
m have simple

expressions:

EpKnq “

n
ÿ

i“1

α

α ` i ´ 1
, EpKpnq

m | X1, . . . , Xnq “

m
ÿ

i“1

α

α ` n ` i ´ 1
. (3.3)

The Dirichlet process is the only exchangeable species sampling model for which such

a simplification occurs (Lijoi et al., 2007a). For beta-gos priors, the prior expected

accumulation curve also has a simple form: EpKnq “ 1 `
řn´1

i“1

śi
j“1 ajpaj ` bjq

´1,
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n ě 2. However, beyond the Dirichlet process, the posterior expectation of K
pnq
m is

typically complex.

3.2.2 The model

In species sampling models, the distribution of the accumulation curve pKnqně1 is

essentially a byproduct of the specification for the values pXnqně1. We propose a

more direct formulation for pKnqně1 which avoids modeling of the sequence pXnqně1.

Let pDnqně1 be a collection of independent binary indicators, denoting the dis-

coveries, with probabilities pπnqně1. Moreover, let Kn “
řn

i“1Di for any n ě 1

be the accumulation curve. By being the sum of independent but not necessarily

identically distributed Bernoulli trials, Kn follows a Poisson-binomial distribution

with parameters π1, . . . , πn. We denote it as Kn „ Pbpπ1, . . . , πnq. The Poisson-

binomial, often denoted as the Pólya frequency distribution or as a convolution of

heterogeneous Bernoulli, has been extensively studied in the literature, with early

contributions from Le Cam (1960); Hoeffding (1956) and Darroch (1964). See also

Gleser (1975); Pitman (1997); Xu and Balakrishnan (2011). When the probabilities

pπnqně1 are all equal, Kn has a binomial distribution. In our setting, πn ą πn`1 for

every n ě 1 with π1 “ 1. In addition, limnÑ8 πn “ 0, so the probability of making a

new discovery eventually approaches zero. A general strategy for constructing such

a set of probabilities is described as follows.

Definition 15. Let T be a random variable on p0,8q with strictly increasing cumu-

lative distribution function F pt;θq indexed by θ P Θ Ď Rp. Moreover, let Spt;θq “

1 ´ F pt;θq be its survival function. The set of probabilities pπnqně1 are said to be

directed by Spt;θq if

πn “ PpTn ą n ´ 1q “ Spn ´ 1;θq, (3.4)

for any n ě 1, where pTnqně1 are independent and identically distributed random
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variables following F pt;θq.

It is easy to check that a set of probabilities pπnqně1 directed by Spt;θq satisfies

the aforementioned requirements. Indeed, one has that π1 “ Sp0;θq “ 1 for any

θ P Θ, since T is supported on p0,8q. Moreover, πn “ Spn´ 1;θq ą Spn;θq “ πn`1,

because by assumption Spt;θq is strictly decreasing. Furthermore, one has that

limnÑ8 πn “ limnÑ8 Spn ´ 1;θq “ 0, as desired, since Spt;θq is a survival function.

Each binary random variable Dn may be represented as Dn “ 1pTn ą n ´ 1q, with

1p¨q denoting the indicator function.

The discovery indicators can be alternatively viewed as the difference of two

consecutive points in the curve, namely Dn “ Kn ´ Kn´1 for any n ě 2 with

D1 “ 1. Hence, the discoveries pDnqně1 and the accumulation curve pKnqně1 carry

the same information, having a one-to-one relationship. Then, if the probabilities

pπnqně1 are directed by Spt;θq, inferential statements about the parameter vector

θ P Θ can be based on the likelihood function L pθ | D1, . . . , Dnq or, equivalently,

on L pθ | K1, . . . , Knq. The former is readily available as

L pθ | D1, . . . , Dnq 9

n
ź

i“2

Spi ´ 1;θq
Dit1 ´ Spi ´ 1;θqu

1´Di , (3.5)

having excluded the degenerate term D1 “ 1. A similar one-to-one relationship

between D1, . . . Dn and the set of labels X1, . . . , Xn is generally not true in species

sampling models and their generalizations; L pθ | X1, . . . , Xnq can be more informa-

tive than L pθ | D1, . . . , Dnq in such cases. A notable exception (see below Theorem)

is the Dirichlet process, where L pθ | D1, . . . , Dnq is retrieved in our setting by as-

suming Spt;θq “ α{pα ` tq with θ “ α ą 0.

Theorem 16. Let pXnqně1 be a sequence of objects directed by a Dirichlet process

as in (3.1) and let pDnqně1 be the associated discovery indicators. Then for a sam-

ple X1, . . . , Xn with Kn “ k distinct values one has L pα | D1, . . . , Dnq 9 L pα |
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X1, . . . , Xnq 9 αk{pαqn, with paqn “ apa ` 1q ¨ ¨ ¨ pa ` n ´ 1q denoting the Pochham-

mer symbol, for any a ą 0 and n ě 1.

Hence, it is equivalent to base inferences on the Dirichlet process parameter α

on the likelihood (3.5) for the discovery indicators instead of the usual likelihood for

X1, . . . , Xn. This occurs because Kn “
řn

i“1Di is the minimal sufficient statistic

for α in the Dirichlet process; see Lijoi et al. (2007a) for similar considerations.

An implication is that the empirical Bayes estimate of α, obtained by maximizing

αk{pαqn, coincides with the maximizer of (3.5).

Remark 17. If a sequence of discoveries pDqně1 is directed by Spt;θq, the general

predictive scheme in equation (3.2) may be specified as

pXn`1 | X1, . . . , Xnq “

#

“new”, with probability Spn;θq,

Xi, with probability qipn;θq, pi “ 1, . . . , nq,

with
řn

i“1 qipn;θq “ 1 ´ Spn;θq “ F pn,θq. As long as probabilities qipn;θq sum

to the cumulative distribution function of T , any choice for their functional form

is valid. Hence, the function Spt;θq does not uniquely identify a sampling model

for X1, . . . , Xn. Careful choices of Spt;θq and qipn;θq can lead to exchangeability

(Lee et al., 2013) or conditional identity in distribution (Berti et al., 2004). For

example, when Spn;θq “ αpα`n1´σq´1, with σ P r0, 1q and α ą 0, letting qipn;θq “

pi1´σ ´ pi ´ 1q1´σq{pα ` n1´σq generates a cid sequence in the family of generalized

Ottawa sequences (Bassetti et al., 2010). However, the resulting likelihood function

lacks a simple analytical form. Given our focus on the sequence of discoveries, we

focus on likelihood (3.5), treating the labels pXnqně1 as nuisance parameters.

3.2.3 Smoothing, prediction and posterior representations

In this Section, we present prior and posterior properties of Kn, which may be useful

for both smoothing and prediction. Supposing pπnqně1 is directed by Spt;θq, it
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immediately follows that Kn „ Pbt1, Sp1;θq, . . . , Spn´1;θqu. The probability mass

function PpKn “ kq of the Poisson-binomial is cumbersome to evaluate, especially

for large n and large k; certain choices of Spt;θq greatly simplify PpKn “ kq, as we

clarify in Section 3.3.2.

However, moments are easily specified, with prior mean and variance equal to

EpKnq “

n
ÿ

i“1

Spi ´ 1;θq, varpKnq “

n
ÿ

i“1

Spi ´ 1;θqt1 ´ Spi ´ 1;θqu, n ě 1.

These formulas may be useful in choosing the parametric form of Spt;θq and for

prior elicitation for θ. We refer to EpKnq “
řn

i“1PpDi “ 1q as the rarefaction

estimator for the accumulation curve; this amounts to smoothing of the K1, . . . , Kn

values observed in the training samples. This expectation does not depend on the

ordering of the data, at least for any fixed value of θ.

Similar considerations can be made for extrapolation. Suppose we are given a

sample of D1, . . . , Dn discoveries displaying Kn “ k distinct entities and that we are

interested in predicting future values of the accumulation curve Kn`1, . . . , Kn`m or

in predicting the number of new entities within a future sample of size m, K
pnq
m “

Kn`m ´ Kn “
řn`m

i“n`1Di. The posterior distribution of pK
pnq
m | D1, . . . , Dnq is avail-

able in closed form, namely

pKpnq
m | D1, . . . , Dnq „ PbtSpn;θq, . . . , Spn ` m ´ 1;θqu.

Hence, EpK
pnq
m | D1, . . . , Dnq “

řn`m
i“n`1PpDi “ 1q “

řm
j“1 Spj ` n ´ 1;θq, so

the posterior distribution of K
pnq
m given the discoveries D1, . . . , Dn is conjugate,

being a Poisson-binomial with updated parameters. The distribution of pKn`m |

D1, . . . , Dnq “ K `K
pnq
m is then a shifted Poisson-binomial, and we have the out-of-

sample extrapolation estimator as

EpKn`m | D1, . . . , Dnq “ k ` EpKpnq
m | D1, . . . , Dnq “ k `

m
ÿ

j“1

Spj ` n ´ 1;θq,
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which can be interpreted as the sum of discovery probabilities.

3.2.4 Asymptotic behavior of the number of distinct species

The limit of Kn as n Ñ 8 is often of inferential interest, representing the random

number of entities one would eventually discover. Depending on the choice of Spt;θq,

two scenarios can occur: i) the number of distinct entities diverges, as in the Dirichlet

process case, so that Kn Ñ 8 almost surely as n Ñ 8. In this regime, it is useful

to study the growth rate of Kn. Alternatively, we could find that ii) the number

of distinct species converges to some non-degenerate random variable Kn Ñ K8,

almost surely, as n Ñ 8. Within ecology the random variable K8 is called the

species richness (e.g. Colwell, 2009).

The asymptotic behaviour of Kn is controlled by the structure of the chosen sur-

vival function Spt;θq. Before stating our first result, let us define EpT q “
ş8

0
PpT ą

tqdt “
ş8

0
Spt;θqdt, that is, the expectation of the latent variables in Definition 15.

Proposition 18. Let Kn „ Pbt1, Sp1;θq, . . . , Spn ´ 1;θqu. Then, there exists a

possibly infinite random variable K8 such that limnÑ8 Kn “ K8, almost surely,

with EpK8q “
ř8

i“0 Spi;θq. Moreover,

EpT q ď EpK8q ď EpT q ` 1. (3.6)

Equation (3.6) provides lower and upper bounds for the asymptotic mean, which

can be used to summarize the species richness. The expected value of EpT q represents

a simple tool to determine whether the accumulation curve diverges or not, as the

following clarifies.

Corollary 19. Under the conditions of Proposition 18, K8 “ 8 almost surely if

and only if EpT q “ 8.

Let us consider the first asymptotic regime, corresponding to the K8 “ 8 case.
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In this case, the rate of growth is controlled by Spt;θq, as clarified in the following

Theorem, which also presents a central limit approximation.

Theorem 20. Let Kn „ Pbt1, Sp1;θq, . . . , Spn´1;θqu and suppose K8 “ 8 almost

surely. Then, as n Ñ 8, Kn{sn Ñ 1 almost surely, for sn “
şn

1
Spt ´ 1;θqdt. In

addition,

Kn ´ EpKnq

varpKnq1{2
Ñ Np0, 1q, n Ñ 8, in distribution.

Theorem 20 implies that the growth rate of Kn corresponds to sn “
şn

1
Spt ´

1;θqdt. In the Dirichlet process case, sn “ α log pα ` n ´ 1q ´α logα, corresponding

to the well-known growth rate α log n (Korwar and Hollander, 1973). The Np0, 1q

limiting distribution allows one to assess uncertainty in Kn for large n. For similar

results in generalized species sampling models settings, see Bassetti et al. (2010).

Consider now the second asymptotic regime: K8 ă 8. Although the distribution

ofK8 is generally not available in closed form, the first two moments are well defined.

Corollary 21. Under the conditions of Proposition 18, if K8 ă 8 almost surely,

then EpK8q “
ř8

i“1 Spi´1;θq ă 8 and varpK8q “
ř8

i“1 Spi´1;θqt1´Spi´1;θqu ă

8.

Hence, a natural estimator for the species richness is EpK8q, which may be nu-

merically approximated; for instance by truncating the infinite summation EpK8q “

ř8

i“0 Spi;θq. Alternatively, one could exploit equation (3.6) and consider the arith-

metic mean of the bounds, obtaining the approximation EpK8q « EpT q ` 1{2,

which is highly accurate when the number of species is not small. Poisson-binomial

conjugacy leads to a related estimator for the posterior species richness, namely

EpK8 | D1, . . . , Dnq. Consider EpKm`n | D1, . . . , Dnq and let m Ñ 8. Then, it is

straightforward to see that EpK8 | D1, . . . , Dnq “ k ` EpK
pnq
8 | D1, . . . , Dnq, where

EpK
pnq
8 | D1, . . . , Dnq “

ř8

j“1 Spj ` n ´ 1;θq.
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3.3 Logistic models

3.3.1 The log-logistic distribution

The framework in the previous Section requires elicitation of Spt;θq. In this Section,

we focus on a class of survival functions, which lead to a generalization of the Dirich-

let process, enjoy appealing analytical and computational properties and result in

natural covariate-dependent extensions, as described in Section 3.3.3. In particular,

we first consider a two parameter case

Spt;α, σq “
α

α ` t1´σ
, t ě 0, (3.7)

where α ą 0 and σ ă 1. The survival function Spt;α, σq characterizes a two-

parameter log-logistic distribution, and therefore we will write T „ llpα, σq. Clearly,

when σ “ 0, Spt;α, 0q reduces to the Dirichlet process case. The parameter σ plays

a similar role to the discount parameter of the Pitman–Yor process and general

Gibbs-type priors. For any σ ă 0, one has

EpT q “
α1{p1´σqπ

p1 ´ σq sintπ{p1 ´ σqu
,

implying that when σ ă 0 the limiting distribution K8 ă 8 is non-degenerate,

thanks to Corollary 19. Conversely, when 0 ď σ ă 1, one has that both K8 “ 8

and EpT q “ 8. The rate at which this occurs is logarithmic in the Dirichlet process

case in which σ “ 0. In contrast, for σ ą 0, one can show that the growth of Kn

is polynomial, so that in the notation of Theorem 20 one has sn “
şn

1
Spt;α, σqdt “

Opnσq. These considerations reinforce the parallelism with Gibbs-type priors; see

Gnedin and Pitman (2005) and De Blasi et al. (2015) for details.

In the next Section, we describe a three-parameter extension of the log-logistic

distribution and derive combinatorial tools and distributional properties that also

apply to Spt;α, σq in (3.7).
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3.3.2 A three parameter log-logistic distribution

In this Section we extend the log-logistic specification by including an additional pa-

rameter, denoted as ϕ, which forces Kn to converge to a non-degenerate distribution.

This allows us to restrict focus to the second asymptotic regime. In particular, we

let θ “ pα, σ, ϕq and

Spt;α, σ, ϕq “
αϕt

αϕt ` t1´σ
, t ě 0, (3.8)

with α ą 0, σ ă 1 and 0 ă ϕ ď 1. The two parameter specification is recovered

when ϕ “ 1. We call the distribution of Spt;α, σ, ϕq a three-parameter log-logistic,

written T „ llpα, σ, ϕq.

Proposition 22. Let Kn „ Pbt1, Sp1;θq, . . . , Spn´1;θqu, with Spt;θq defined as in

equation (3.8). Then for any 0 ă ϕ ă 1 it holds that Kn Ñ K8 ă 8 almost surely

as n Ñ 8.

Proposition 22 ensures that for 0 ă ϕ ă 1 the species richness is always finite.

For the remainder of the Section, we discuss some combinatorial properties related

to the law of Kn. While having their own theoretical relevance, our results facilitate

computation of the probability mass function of Kn and draw further parallels with

Gibbs-type priors.

Definition 23. Let α ą 0, σ ă 1 and 0 ă ϕ ď 1. Then for any n ě 1 and 0 ď

k ď n we define Cn,kpσ, ϕq as the coefficients of the polynomial expansion
śn´1

k“0pα`

k1´σϕ´kq “
řn

k“0 α
k Cn,kpσ, ϕq, having set C0,0pσ, ϕq “ 1.

In the special case ϕ “ 1 and σ “ 0 one recovers the definition of the signless

Stirling numbers of the first kind, namely Cn,kp0, 1q “ |spn, kq|; see Charalambides

(2005). In addition, the coefficients Cn,kpσ, ϕq can be conveniently computed through

recursive formulas.

43



Theorem 24. The coefficients Cn,kpσ, ϕq of Definition 23 satisfy the triangular re-

currence

Cn`1,kpσ, ϕq “ Cn,k´1pσ, ϕq ` n1´σϕ´nCn,kpσ, ϕq,

for any n ě 0 and 1 ď k ď n`1, with initial conditions C0,0pσ, ϕq “ 1, Cn,0pσ, ϕq “ 0,

n ě 1, Cn,kpσ, ϕq “ 0, k ą n. Moreover, for any 1 ď k ď n and n ě 2, one has

Cn,kpσ, ϕq “
ÿ

pi1,...,in´kq

n´k
ź

j“1

i1´σ
j ϕ´ij ,

where the sum runs over the pn´kq-combinations of integers pi1, . . . , in´kq in t1, . . . , n´

1u.

We can now state the main theoretical result, namely the probability mass func-

tion of Kn, which can be expressed in terms of the coefficients Cn,kpσ, ϕq.

Theorem 25. Let Kn „ Pbt1, Sp1;α, σ, ϕq, . . . , Spn ´ 1;α, σ, ϕqu for every n ě 1.

Then,

PpKn “ kq “
αk

śn´1
i“0 pα ` i1´σϕ´iq

Cn,kpσ, ϕq.

Theorem 25 reduces to the distribution obtained by Antoniak (1974) when σ “ 0

and ϕ “ 1. Gibbs-type priors enjoy a similar structure for the distribution of Kn,

replacing Cn,kpσ, ϕq with generalized factorial coefficients; see Gnedin and Pitman

(2005); De Blasi et al. (2015).

3.3.3 Covariate-dependent models

Under the three parameter log-logistic specification, the discovery probabilities are

πn`1 “ PpDn`1 “ 1q “ αϕnpαϕn ` n1´σq´1 for n ě 1 with π1 “ 1. An interesting

and practically useful property of our model is the following representation

log
πn`1

1 ´ πn`1

“ logα´p1´σq log n`plog ϕqn “ β0`β1 log n`β2n, n ě 1, (3.9)
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having set β0 “ logα, β1 “ σ ´ 1 ă 0 and β3 “ log ϕ ď 0. Equation (3.9) has the

form of a logistic regression for the binary indicators D2, . . . , Dn, with coefficients β2

and β3 constrained to be negative. By letting β1 “ ´1 and β2 “ 0 one recovers the

discovery probability of the Dirichlet process.

The logistic regression representation in (3.9) facilitates extensions to include

covariates. Suppose we are given a collection pK1,nqně1, . . . , pKL,nqně1 of L accu-

mulation curves, representing sequential discoveries at different sampling locations.

Each location is associated with covariates zTℓ “ pzℓ,1, . . . , zℓ,pq P Rp for ℓ “ 1, . . . , L.

Let pDℓ,nqně1 be the sequence of discovery indicators for the ℓth location, with prob-

abilities pπℓ,nqně1. The most flexible specification for Kℓ,n corresponds to the case in

which all the parameters are location-specific so that for any n ě 1,

log
πℓ,n`1

1 ´ πℓ,n`1

“ βℓ,0 ` βℓ,1 log n ` βℓ,2n, pℓ “ 1, . . . , Lq.

This specification can borrow information across locations via a hierarchical model

on βl “ pβl,0, βl,1, βl,2q
T or by fixing certain parameters. Alternatively, systematic

variation across locations can be modeled by including covariates zℓ via

log
πℓn`1

1 ´ πℓ,n`1

“ βℓ,0 ` βℓ,1 log n ` βℓ,2n “ zTℓ γ0 ` pzTℓ γ1q log n ` pzTℓ γ2qn, (3.10)

for ℓ “ 1, . . . , L, with γ0,γ1,γ2 P Rp being vectors of coefficients such that zTℓ γ2 ă 0

and zTℓ γ2 ď 0. This specification is still in the form of a logistic regression and there-

fore inference on the parameters γ0,γ1 and γ2 can be conducted through straight-

forward modifications of standard algorithms.

3.4 Posterior computation

3.4.1 Estimation procedures

Consider the model in equation (3.9). The parameters θ “ pα, σ, ϕq can be estimated

by maximizing the likelihood in equation (3.5), with Spt;θq “ Spt;α, σ, ϕq, β1 ă 0
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and β2 ď 0. In practice, it may suffice to ignore these restrictions and apply routine

algorithms for fitting logistic regression, as the maximum likelihood estimates typi-

cally satisfy the constraints. In this case, the resulting estimate θ̂ has the following

appealing property.

Proposition 26. Let θ̂ “ pα̂, σ̂, ϕ̂q be the unconstrained maximizer of equation (3.5)

under the three-parameter specification in (3.8), if it exists. If Kn “ k is the number

of discoveries within the data D1, . . . , Dn, then the expectation EpKnq, evaluated at

θ̂, equals k.

Hence, EpKnq matches the total number of distinct labels observed in the se-

quence when the parameters are estimated through unconstrained maximum like-

lihood. Although we can obtain confidence intervals and standard errors for the

parameters via maximum likelihood, conducting inferences in this manner ignores

the parameter constraints. In contrast, a fully Bayesian approach can easily incor-

porate them through a prior, such as β „ Npµ,Σq1pβ1 ă 0; β2 ď 0q. The covariate-

dependent regression in equation (3.10) can be implemented in a similar manner; for

details, see Appendix B.

3.4.2 Removing order dependence

The construction of accumulation curves is inherently order-dependent (Gotelli and

Colwell, 2001). As such, inference on the parameter θ P Θ depends on the order of

the observations. This can be problematic when only the frequencies n1, . . . , nk are

available, as there are pn´1q!{tpn´kq!pk´1q!u curves that are consistent with these

frequencies. This has motivated the derivation of the individual-based rarefaction

curve (Smith and Grassle, 1977; Colwell et al., 2012),

K̄i “ k ´

ˆ

n

i

˙´1 k
ÿ

j“1

ˆ

n ´ nj

i

˙

, i “ 1, . . . , n, (3.11)
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with Kn “ k, where (3.11) represents the average accumulation curve over all the

possible orderings of the discoveries, each having the same probability. This proves

useful in our case, as we can effortlessly apply our method relying on (3.11). Specif-

ically, consider the auxiliary random variables D̄i “ K̄i`1 ´ K̄i with D̄1 “ 1. We can

estimate θ through the likelihood

L pθ | D̄1, . . . , D̄nq “

n
ź

i“2

Spi ´ 1;θq
D̄i
␣

1 ´ Spi ´ 1;θq
(1´D̄i , (3.12)

in place of equation (3.5). Inference about θ based on (3.12) will refer to the av-

erage accumulation curve. This procedure can be regarded as the approximation

of a suitable marginal likelihood EtL pθ | D1, . . . , Dnqu, representing the average

likelihood over all the possible orderings of the discoveries. Thus, by interchanging

the expectation operator inside the likelihood function, we obtain the approximation

EtL pθ | D1, . . . , Dnqu « L pθ | D̄1, . . . , D̄nq.

3.5 Simulations

We test our log-logistic model on synthetic sequences generated from different asymp-

totic regimes. In each simulation, we randomly generate one sequence of labels from

a given model and take the first n “ 10, 000 observations as a training set. The

remaining m “ 20, 000 observations are used as a test set. We compare in- and out-

of-sample performances of seven different models: our one-, two- and three-parameter

log-logistic models, labelled as ll1, ll2, and ll3 henceforth, the two versions of the

beta-gos detailed in Proposition 1 in Airoldi et al. (2014), the Pitman–Yor model

and the Dirichlet-multinomial model. Our ll1 coincides with the Dirichlet process

by Theorem 16.

When possible, model estimation proceeds via empirical Bayes on the training set.

For the log-logistic model we rely on the constrained logistic regression representation
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(3.9). Parameters in the Pitman–Yor and Dirichlet-multinomial are obtained via

maximization of the exchangeable partition probability function (Pitman, 1996),

setting an arbitrarily high upper bound on H in the Dirichlet-multinomial equal to

kn ` 10, 000, with kn being the number of distinct species observed in the training

set at n “ 10, 000. Lacking a tractable likelihood, beta-gos processes are estimated

via method of moments. Recalling that the discovery probability in beta-gos is

πn`1 “
śn

i“1Wi with independent Wn „ betapan, bnq, we employ two versions

of the process. The first, bg-1pa, bq, lets an “ a ą 0 and bn “ b ą 0. In this

case, the estimator for the accumulation curve is EpKnq “ p1 ´ ρnq{p1 ´ ρq, with

ρ “ a{pa ` bq and thus K8 ă 8 almost surely. We can estimate ρ by solving the

equation EpKnq “ kn, with kn defined as above. In the second version, bg-2pθ, βq,

we let an “ θ ` n´ 1 and bn “ β, with θ ą 0 and β ą 0. The associated rarefaction

is EpKnq “
řn

i“1pθqβ{pθ ` iqβ. This case admits both a finite and an infinite species

richness, as K8 ă 8 when β ą 1 and K8 “ 8 when β P p0, 1s. For further details,

see Airoldi et al. (2014). Method of moment estimates for θ and β can be derived as

a solution of the equations EpKnq “ kn and EpKn{3q “ kn{3.

Table 3.1: Models performance for curves simulated from Bayesian nonparametric
predictive schemes. Values report average mean square error across 500 simulations
of each scenario, with curves of length 30, 000. Training set consists of the first
10, 000 observations.

dir-mult beta-gos-2 dirichlet pitman–yor
H “ 500, σ “ ´1 θ “ 500, β “ 1.5 α “ 10 α “ 10, σ “ 0.5

model train test train test train test train test

dp (ll1) 3, 011.3 3, 954.2 2, 500.5 6, 313.1 6.7 7.6 7, 358.2 3.3 ˆ 104

py 3, 011.3 3, 953.6 2, 500.5 6, 311.6 5.5 8.9 109.6 544.0
dir-mult 20.5 14.6 1, 266.7 2, 908.6 5.9 9.1 6, 857.1 3.5 ˆ 104

bg-1pa, bq 1, 633.4 138.5 9, 345.8 3, 905.5 171.1 58.6 4.1 ˆ 104 8.3 ˆ 104

bg-2pθ, βq 18.3 23.6 38.4 152.3 4.4 14.6 51.4 982.6
ll2 71.8 141.0 77.7 428.1 3.9 11.3 70.0 1, 087.4
ll3 11.8 50.1 22.5 452.2 3.1 16.1 67.3 1, 640.4

Table 3.1 reports the average mean square error across 500 accumulation curves
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simulated via Bayesian nonparametric predictive schemes. The first two scenarios,

the Dirichlet-multinomial and beta-gos, feature a finite species richness. The other

two assume a divergent accumulation curve. The purpose of our analysis is to com-

pare the performance of our logistic models over species sampling sequences with

the true generating model as a competitor. The in-sample average mean square

error of ll3 is generally lower than other models, except in the Pitman–Yor case,

where bg-2pθ, βq performs better. This reconfirms the strong similarity between the

trajectories of the Pitman–Yor and beta-gos highlighted in the Introduction. Not

surprisingly, the best model is always the true generating one in the test set. In

almost every case, however, differences between the log-logistic specifications and

the true model are small.

Table 3.2: Performance for curves simulated via independent samples from finite and
infinite support distributions. Values report average mean square error across 500
simulations of each scenario, with curves of length 30, 000. Training set consists of
the first 10, 000 observations.

finite geom. finite zipf geometric zipf
H “ 100, η “ 0.95 H “ 3000, η “ 0.25 η “ 0.1 η “ 2

model train test train test train test train test

dp (ll1) 117.6 116.6 4.5 ˆ 104 5.8 ˆ 104 1.7 2.1 760.6 2, 165.5
py 117.6 116.6 4.5 ˆ 104 5.8 ˆ 104 1.7 2.1 405.1 105.7
dir-mult 5.1 4.3 192.1 1, 156.2 1.5 2.9 747.2 2, 181.8
bg-1pa, bq 85.4 0.2 803.9 1, 259.0 23.3 8.1 2, 847.9 3, 895.9
bg-2pθ, βq 9.0 2.4 140.3 1, 539.9 1.6 4.4 12.6 187.8
ll2 7.3 12.0 2062.0 8.3 ˆ 104 1.2 2.8 11.6 125.0
ll3 1.4 0.6 62.9 849.9 1.0 3.8 9.7 293.8

Following the same structure as above, Table 3.2 investigates the predictive per-

formance of the models in the misspecified case in which the species probabilities

follow geometric or Zipf distributions with or without truncation to finite support.

We mirror the structure in Table 3.1, with the first two models having K8 ă 8 and

the last two K8 “ 8. Details are provided in Appendix B. ll3 achieves the best

in-sample performance, and log-logistic models perform particularly well in finite

49



(truncated) cases. In the infinite cases, the Pitman-Yor had good predictive perfor-

mance, likely due to similar tail behavior between py and these two distributions,

but failed badly in-sample for the Zipf.

The values for the parameters of the generating models we have chosen in this

Section are intended to simulate representative trajectories for the accumulation

curves, both in converging and diverging cases. For an extended analysis on more

scenarios and varying parameters, including plots of the generated curves, refer to

Appendix B.

3.6 Applications

3.6.1 Copepod species counts

We test our model on a dataset of abundances of distinct copopod species from the

Southampton National Oceanography Centre, available in the R package untb (Han-

kin, 2007). The data consist of n “ 1, 829, 767 observations divided into 378 species,

with 10 appearing only once, 3 appearing twice and the most abundant species ap-

pearing 503, 319 times. As depicted by the circles in Figure 3.2, the individual-based

rarefaction curve seems close to convergence, facilitating assessments of model per-

formance that attempt to predict the later part of the curve and species richness

based on an initial part of the curve.

We compare the models of Section 3.5 by considering two training-test settings,

taking random subsets of one-fifth and one-third of the data as training sets. We

extrapolate the fitted curves for the remaining samples. Model fitting proceeds with

a fully Bayesian approach when possible, initializing the chain at the maximum like-

lihood estimate and performing 10, 000 iterations after a 5, 000 burn-in. For the

Pitman–Yor process we adopt normal priors centered at 0 with a standard deviation

of 10 for γ1 “ logpα ` σq and γ2 “ logtσp1 ´ σq´1u, and apply Adaptive Metropolis

(Haario et al., 2001) keeping one sample every 10 iterations. A similar procedure
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Figure 3.2: Performance of ll3 on the copepod species counts data. Circles:
individual-based rarefaction curve. Grey line: predicted in- and out-of-sample
accumulation curve computed by averaging over posterior samples of EpKnq and
EpKn | D1, . . . , Dnq, respectively. Black dashed lines indicate the posterior 95% pos-
terior predictive credible interval, obtain by simulating one posterior trajectory for
each sample. The black vertical line indicates the training-test cutoff.

is applied to the Dirichlet process with β0 “ logα „ Np0, 10q, but saving every

iteration. For the log-logistic models we use equation (3.9), and impose the con-

straints with truncated normal priors as in Section 3.4. Posterior samples for ll2

and ll3 are obtained via the Metropolis adjusted Langevin algorithm (Roberts and

Rosenthal, 1998) with the proposal covariance equal to ϵ2Σ̂, where Σ̂ is the inverse

of the Hessian of the model evaluated at the maximum likelihood estimate and ϵ2 is

a scaling parameter iteratively tuned to reach an acceptance rate of 0.576.

All the samplers had effective sample sizes between 2, 000 and 6, 000. Finally, we

sample from the posterior of the Dirichlet-multinomial by discretizing σ into 5, 000

equally spaced values between ´0.005 and ´3, fixing an upper bound on H equal to

5, 000 plus the observed Kn and setting a discrete uniform prior over each interval.

For the beta-gos models, the absence of a simple form for the likelihood limits the

availability of posterior samplers. Thus, we estimate the parameters via method of

moments by solving the linear systems described in Section 3.5, taking kn to be the
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nth value of the individual-based rarefaction in equation (3.11).

Table 3.3: Model performances and out-of-sample predictions on the copepod species
counts data. The columns under mse report in-sample the mean square error of
EpKnq. Values in brackets report the 95% posterior predictive credible interval for
the extrapolation estimator.

train=1{5 train=1{3
n “ 365, 953; Kn “ 358 n “ 609, 922; Kn “ 368

mse m “ n{2 m “ n m “ 4n mse m “ n{4 m “ n m “ 2n

K̄n`m 365.16 368.87 378 370.32 373.97 378

dp (ll1) 50.41 373.93 385.21 421.15 130.99 376.56 394.47 409.87
(367, 382) (375, 397) (405, 439) (371, 383) (385, 406) (397, 424)

py 60.91 374.56 386.35 424.03 131.21 376.66 394.83 410.45
(367, 384) (376, 399) (406, 446) (371, 383) (385, 406) (397, 425)

dir-mult 41.60 373.01 383.47 416.95 90.85 375.97 392.54 406.69
(366, 381) (374, 394) (401, 434) (371, 382) (383, 403) (394, 420)

bg-1pa, bq 2703.71 358 358 358 2101.28 368 368 368
(358, 358) (358, 358) (358, 358) (368, 368) (368, 368) (368, 368)

bg-2pθ, βq 73.8 369.72 377.79 402.40 95.25 372.97 382.94 391.04
(364, 377) (370, 387) (390, 416) (369, 378) (376, 391) (382, 401)

ll2 125.22 376.48 389.73 432.85 178.23 377.04 396.08 412.58
(368, 386) (378, 408) (410, 459) (372, 384) (385, 409) (397, 430)

ll3 1.59 363.70 365.91 367.80 3.52 370.17 372.40 372.93
(359, 371) (359, 377) (360, 384) (368, 374) (368, 380) (368, 381)

Table 3.3 compares in- and out-of-sample performance. The mse columns report

the mean square error between the individual-based rarefaction curve K̄n`m and

the model-based rarefaction estimator, obtained by averaging EpKnq over posterior

samples. In both cases, ll3 shows the best in-sample performance. To test out-of-

sample performance, we first compute the individual-based rarefaction curve for the

test set, K̄n`m, by averaging across 5, 000 randomly sampled orders of appearance in

the test set. Then, we extrapolate by simulating one trajectory Kn`m | D1, . . . , Dn,

m ě 1, for each sample drawn from the posterior distribution of the parameters. This

is straightforward for the species sampling and log-logistic models, but problematic

for beta-gos due to prohibitive computational cost for large n. Fortunately, for

large n, the variance of the discovery probability is typically small and goes to 0
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as n Ñ 8 when β ě 1. This implies that fixing the discovery probabilities to

their average values when sampling one accumulation curve induces only a minor

reduction in uncertainty. For more details, see the Supplementary Material. In

both cases, the 95% posterior predictive credible interval for Kn`m | D1, . . . , Dn

for ll3 contains the true value K̄n`m, and the posterior predictive mean EpKn`m |

D1, . . . , Dnq slightly underestimates the truth. This is further confirmed by looking

at the whole trajectory, as depicted in Figure 3.2. The species sampling models do

not correctly capture the average out-of-sample trajectory of the test set. This is

expected in the Dirichlet and Pitman-Yor processes, as both assume a divergent Kn.

However, the Dirichlet-multinomial also performs badly, likely due to the behavior

resembling the Dirichlet process for values of σ close to 0 and large values of H.

For beta-gos-2, the out-of-sample trajectory is captured only for values close to

the training-test cutoff. Finally, beta-gos-1 performs poorly due to the lack of

flexibility of the underlying exponential behavior of the model. For more results

on the data, including plots, posterior estimates of the parameters and additional

training-test splits, refer to Appendix B.

3.6.2 Fungal biodiversity

We analyze data from a fungi biodiversity study in Finland (Abrego et al., 2020).

Each sample contains a large number of fungal DNA barcode sequences obtained

either from air samples or soil samples. As it is too expensive to barcode all the

fungi spores in a sample, it is important to be able to predict how many species are

missed when sequencing a particular amount. The goal of our analysis is to answer

this question.

The data consist of 174 different samples from different sites across five cities

in Finland. For each site, fungi samples are collected on the same dates at two

urban areas, one at the core and one at the edge of the city, and two nearby natural
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Figure 3.3: In-sample performance in the Finnish fungal biodiversity data. The in-
sample estimator EpKnq is computed by averaging model rarefaction across posterior
samples. The value of K̄n indicates the individual-based rarefaction curve at n.

areas, again with one at the core and one at the edge. Two different sampling

methods were used: i) through air, via a cyclone trap and continuously for 24 hours,

and ii) through soil, gathering a small portion of soil close to the air trap. We

exclude samples with less than 10, 000 sequences, as in such cases the samples lacked

sufficient numbers of spores for more comprehensive barcoding. This leaves us with

a total of 150 samples. An issue in pre-processing the data is reliable identification of

singletons, otus that have been identified only once within a given sample. Ecologists

often discard such singletons from the analysis, leading to significant bias. In the

Supplementary Materials we instead propose a simple imputation approach.

The average number of barcoded DNA sequences per sample is 124, 271 and

the average number of species discovered is 2, 161. As a first step, we compare

the in-sample performances of four different models: Pitman-Yor, beta-gos-2 and

two- and three- parameter log-logistic models. We exclude beta-gos-1, Dirichlet-

multinomial and Dirichlet/one-parameter log-logistic, as they showed very poor per-

formance. Model fitting and prediction proceeded exactly as in Section 3.6.1.

Figure 3.3 displays in-sample performance of the models across the 150 samples.

Each point represents the percentage absolute error between EpKnq, obtained by
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Figure 3.4: Left panel: distribution of the posterior mean species richness for the
150 samples. Center panel: distribution of the posterior mean sample saturation for
the 150 samples. Right panel: additional number of samples (in percentage) required
to reach a target posterior saturation of 0.95.

averaging the model rarefaction across the posterior samples, and K̄n at a given

fraction of a curve. All models perform well overall, deviating from the true values

of K̄n by less than 1%. The Pitman–Yor is the least flexible in-sample. beta-gos-2

yields perfect fit at fractions 0.33 and 1 due to the estimates of θ and β being the

solution of EpKn{3q “ k̄n{3 and EpKnq “ k̄n, with n the total length of a given curve.

The consequence of this choice is that the beginning of the curve, namely fraction

0.1, shows more error variability. For the log-logistic models, the high accuracy at

fraction 1 is an indirect consequence of Proposition 26 and vague priors over the

regression coefficients.

Although the above models fit well, only ll3 estimated a convergent K8. For

beta-gos2 all curves estimated β ă 1, implying K8 “ 8. Thus, we rely on ll3 in

performing inferences on i) the sample species richness, which is the total number

of species that can be detected through barcoding within a sample, and ii) whether

DNA barcoding has reached saturation at different sites, meaning that only very

few species are missed. To address i), we estimate the posterior mean EpK8 |

D1, . . . , Dnq for each individual sample, which is guaranteed to be finite. The results
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are reported in the left panel of Figure 3.4, which displays the expected sample

species richness for each of the 150 samples across site characteristics. Air samples

tend to contain more species, and there is some evidence of greater species richness

in natural environments, as reported by Abrego et al. (2020).

For task ii), let Cn “ Kn{K8 ď 1 represent the saturation level of a given

sample after n barcoded sequences. Differences across sites can be evaluated via

EpCn | D1, . . . , Dnq, which represents the posterior expected saturation level of a

sample. Figure 3.4, right panel, summarizes posterior mean saturation stratified by

sampling site characteristics. While there is some variability across sites, most of

them have a ratio around 0.5. The results suggest that if additional DNA sequences

are barcoded there is the opportunity to detect approximately 20´50% more species

in each sample. Urban soil samples seem to have a systematically higher saturation

than their Air counterparts. Finally, we can estimate the number m of additional

sequences that would need to be barcoded to reach a desired saturation level Cn`m.

This is reported in the right panel of Figure 3.4, where the target saturation level

is 95%. This confirms the fact that generally all samples require a high barcoding

effort to detect almost all the species.

3.7 Discussion

In this paper we proposed a novel method for predicting the appearance of previously

unobserved objects in a sequence. We showed that our procedure generalizes the dis-

covery probability of the Dirichlet process. Finite sample and asymptotic properties

of the number of distinct speciesKn were extensively studied. In addition, we showed

that a subclass of models is linked to a logistic regression with constrained coeffi-

cients. This has major computational advantages compared to existing Bayesian

nonparametric procedures, which allowed us to implement our modeling strategies

in large datasets. All of our estimators are based on moments of the Poisson-binomial
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distribution. Despite its rather complex shape (Chen, 1975), this distribution admits

several approximations (e.g. Goldstein, 2010; Hong, 2013). These may be useful in

obtaining approximations to the distribution of K8.

From a Bayesian nonparametric perspective, our species discovery framework en-

riches the increasingly large literature on models beyond exchangeability (e.g. Berti

et al., 2004; Airoldi et al., 2014; Fortini et al., 2018; Ascolani et al., 2021; Berti

et al., 2021). Indeed, the construction of an accumulation curve is intrinsically a

non-exchangeable procedure, because the sequential discoveries necessarily depend

on the chosen ordering (Gotelli and Colwell, 2001). We solved the order dependence

by applying our framework to the individual-based rarefaction curve, which is the

average accumulation curve for given abundances (Smith and Grassle, 1977). As

detailed in Remark 17, choices for the allocation probabilities under a sequential

discovery model without exchangeability may still retain certain convenient prop-

erties (Bassetti et al., 2010). Urn-based non-exchangeable models are particularly

promising for sequential and dynamic data.

Instead of taking a Bayesian nonparametric perspective, similar methodology and

theoretical conclusions could have been achieved by modeling the trajectory in the

distinct species as the output of a discrete time pure-birth in-homogeneous Markov

process with birth probability Spt;θq. The link between pure-birth processes and

accumulation curves has long been known (Soberon and Llorente, 1993; Diaz-Frances

and Gorostiza, 2002). We chose to focus on the Bayesian nonparametric viewpoint

due to the rich statistical literature on species sampling taking this perspective.

We extensively investigated in Section 3.3 the logistic subclass of models, which

has appealing theoretical and computational properties. However, different survival

functions Spt;θq may be considered (e.g. exponential, Weibull, Gompertz) to ac-

commodate different shapes and growth rates. For example, one can impose Spt;θq

to be equal to the average discovery probability of the beta-gos-2 with β ě 1.
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Indeed, our results of Section 3.2 are fully general and can be readily specialized to

any survival function. This is an interesting research direction.
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4

Inferring taxonomic placement from DNA
barcoding aiding in discovery of new taxa

4.1 Introduction

DNA barcoding refers to the practice of identifying the taxonomic affiliation of un-

known specimens through short fragments of their DNA molecular sequence called

barcoding genes (Hebert et al., 2003). Typically, this assessment is performed by

comparing the DNA obtained from the high-throughput sequencing of a bulk sam-

ple to libraries of genes whose Linnean taxonomy is well-established. Examples of

these collections are numerous, with the Barcode of Life project (BOLD; Sarkar and

Trizna, 2011) and GenBank (Benson et al., 2012) being particularly notable cases.

For the identification to be reliable, reference DNA sequences should be charac-

terized by limited intra-species and high inter-species gene variation and should be

sufficiently simple to align and compare (Hebert et al., 2003). In the animal kingdom

and insects especially, these characteristics have been found in a region of approxi-

mately 650-base-pairs near the 5th end of the mitochondrial cytochrome c oxidase

sub-unit I, or COI, gene (Janzen et al., 2005). This region has become routinely
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used in animal species identification. In particular, libraries in BOLD are formed by

clustering similar COI sequences under a common Barcode Index Number, or BIN,

which identifies a given species (Ratnasingham and Hebert, 2013).

The impact of DNA barcoding in biodiversity assessment has been dramatic.

It took more than 200 years to describe approximately 1 million species of insects

through morphological inspection, whereas nearly 400,000 BINs have been catego-

rized within just 10 years (Wilson et al., 2017). DNA barcoding offers a way to

categorize large quantities of specimens collected by modern automatic sampling

methods. For example, flying insects are routinely captured with Malaise traps

(Malaise, 1937), which collect the sampled insects together in a preservative within

a storage cylinder. While this method often causes deterioration of the captured an-

imals, making them morphologically unrecognizable, the biological material can be

processed relatively cheaply (Shokralla et al., 2014) through a practice called DNA

metabarcoding (Yu et al., 2012), which groups similar sequences detected in the sam-

ples into operational taxonomic units, or OTUs. These provide initial hypothesized

species labels for the animals in the sample, and assessing their taxonomic placement

is the final key stage of a bioinformatics pipeline.

Despite the advantages described above, taxonomic assessment of OTUs presents

its own challenges, especially at lower level ranks. While it is relatively easy to

accurately place a DNA sequence to a phylum, a class, or an order (Yu et al., 2012),

the information obtainable via high-throughput methods is limited by the short

length of the sequences extracted. This makes the identification at the family, at

the genus, and at the species level subject to higher uncertainty (Pentinsaari et al.,

2020). Moreover, DNA metabarcoding may be prone to sequencing and clustering

errors. Consequently, it can either split biologic material from the same species

into two different clusters or merge different species into a single cluster (Somervuo

et al., 2017). Finally, reference sequence libraries can be subject to mislabelling errors
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(Somervuo et al., 2016) and can be incomplete (Virgilio et al., 2012; Wilkinson et al.,

2017; Weigand et al., 2019). This leads to the necessity of developing classification

methods that provide a reliable characterization of uncertainty when taxonomically

annotating the collected OTUs, accounting for the potential lack of information and

therefore barcode novelty in the library. Ultimately, such methodologies allow one to

quantify and track the biodiversity of a given sampling region only if the classification

probabilities are reliable and OTUs are obtained consistently across time and space.

Much software for taxonomic recognition has been developed, relying on different

prediction methods. One approach labels a query DNA with the taxon of the refer-

ence sequence having the highest similarity (Huson et al., 2007; Nguyen et al., 2014).

This requires applying local or global alignment procedures to the sequences in the

library, such as the BLAST - Basic Local Alignment Search Tool - similarity score

(Altschul et al., 1990). When alignment is undesirable due to computational costs,

fast algorithms that exploit a κ-mer representation of the sequences can be adopted.

Widely used examples are the näıve Bayes RDP classifier (Wang et al., 2007) and its

non-Bayesian heuristic alternatives (e.g. SINTAX; Edgar, 2013). More recent meth-

ods use modern machine learning and deep learning techniques including tree-based

classification algorithms (IDTAXA; Murali et al., 2018) and convolutional neural

networks (Vu et al., 2020).

While these approaches can provide good classification results when the train-

ing data are sufficiently informative of the biodiversity of the environmental sample

(Bazinet and Cummings, 2012), they can lead to unreliable matches when the ref-

erence sequence set is incomplete, as is often case (Wilkinson et al., 2017; Murali

et al., 2018). Thus, algorithms must coherently account for potential taxonomic

novelty when doing classification (Somervuo et al., 2017). Specifically, sequences are

regarded as “new” if their true taxonomic annotation is unobserved in the training

library. This does not necessarily imply that the specimen from which DNA has been
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sequenced identifies a taxon new to science. Instead, novelty may be driven by a lack

of reference sequencing data for known taxa, limited training libraries, low quality

and gaps in barcodes, and sequencing errors in queries. All these factors can poten-

tially lead to false positives, labelling a sequence as “new” when it is not, or false

negatives, predicting a known taxon when a new one should be identified. This com-

mon issue has been addressed in the literature in various ways (Lanzén et al., 2012;

Lan et al., 2012; Edgar, 2013; Bokulich et al., 2018). The widely adopted solution is

to select a confidence probability cutoff and regard the classification as unreliable if

the predicted taxon has a probability below that threshold (Wang et al., 2007). For

example, the default RDP classifier does not report the predicted genus of a query if

the most likely genus has a prediction probability lower than 0.8. This cutoff depends

on the specific algorithm and often requires appropriate tuning (Lan et al., 2012).

Moreover, confidence thresholds might be species-dependent due to differences in ge-

netic variability between and within taxa. A second possibility is to explicitly allow

the algorithm to signal if the queries are likely from previously unobserved taxa, as is

done by PROTAX - PRObabilistic TAXonomic placement (Somervuo et al., 2016).

PROTAX classifies DNA sequences by training a multinomial regression model on

a sub-sample of the reference library reflecting prior knowledge of the existing tax-

onomy. The algorithm can lead to over- or under-detection of new taxa at any rank

if the training dataset is not representative. With this approach, novel nodes in the

taxonomic tree are explicitly treated as separate classes to be modelled, and they

are assigned a prediction probability when classifying queries.

In this paper, we follow the latter approach and develop an off-the-shelf Bayesian

nonparametric model for DNA barcode data that explicitly accounts for novelty

by modelling the potential undetected nodes at every unlabelled taxonomic level.

As our application primarily focuses on insects, we name our method BayesANT,

short for BAYESiAn Nonparametric Taxonomic classifier. BayesANT is a supervised
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prediction algorithm that is trained on a set of sequences whose taxonomic affiliation

is known and later annotates unlabelled DNA barcoding sequences in a probabilistic

manner. In particular, it computes taxon-assignment probabilities at all unlabelled

ranks by combining a prior distribution for the taxonomic tree with a kernel-based

approach to modelling the distribution of the nucleotide sequences conditioned on

their full taxonomic affiliation. Taxon novelty is incorporated through a Pitman–

Yor process prior (Pitman and Yor, 1997), which is a species sampling model urn

scheme (Blackwell and MacQueen, 1973; Pitman, 1996) that automatically specifies

probabilities for the appearance of undiscovered species (Lijoi et al., 2007a; Favaro

et al., 2009) in a coherent way. For aligned sequences, we use a Dirichlet-multinomial

product kernel over nucleotides, while, for unaligned sequences, we use a multinomial

kernel over κ-mer counts. The resulting model facilitates fast computation of a

probabilistic classifier, which provides careful uncertainty assessments in taxonomic

annotations. Unlike the other methods described above, our method avoids using

an arbitrary threshold to annotate a sequence as being from a clade unobserved in

training. In particular, taxonomic novelty in BayesANT can be aided through the

choice of the Pitman–Yor prior hyperparameters, which can be either fixed ex-ante

based on prior knowledge or estimated from the data. We test BayesANT on a

library of arthropod DNA sequences collected in Finland (Roslin et al., 2022).

The Chapter is organized as follows. Section 4.2 presents the model in great

detail. Section 4.3 presents the analysis of the Finnish DNA barcoding library.

Concluding remarks are discussed in Section 4.4. Additional simulations and results

are reported in Appendix C.

4.2 Materials and Methods

BayesANT evaluates the probabilities that a given DNA query sequence belongs

to each of the nodes of the observed taxonomy, allowing for unobserved nodes in
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the taxonomic tree to be discovered. These probabilities are derived via Bayes

rule, while taxonomic novelty arises through Pitman–Yor process priors. Let Xi “

pXi,1, . . . , Xi,Lq be the taxonomic labels of the ith sequence in a library of L ranks,

and Yi the associated nucleotide sequence from any barcoding gene, such as COI

for insects or ITS2 for fungi. We indicate taxonomic library of n sequences as

Dn “ pXi,Yiq
n
i“1. See Sections 4.2.2 and 4.2.4 for more details on how the data

are structured. The goal of BayesANT is to predict Xn`1, the labels for pn ` 1qth

sequence, treating the DNA Yn`1 as covariate. We perform this by paralleling the

construction behind näıve Bayes classifiers and linear discriminant analysis: the prob-

ability that the pn ` 1qth query belongs to the taxonomic branch x “ px1, . . . , xLq

conditioned on library Dn and sequence Yn`1 is

ppXn`1 “ x | Yn`1,Dnq 9 ppXn`1 “ x | Xpnq
q ˆ ppYn`1 | Xn`1 “ x,Dnq, (4.1)

where Xpnq “ pXiq
n
i“1 are the observed taxonomic labels, ppXn`1 “ x | Xpnqq is the

prior probability of branch x and ppYn`1 | Xn`1 “ x,Dnq is the distribution of the

DNA sequence conditioned on x being its assigned branch. Refer to the Supporting

Information for a step-by-step derivation of equation (4.1). In what follows, we

carefully specify how each component is determined.

4.2.1 Preliminaries: the Pitman–Yor process

The Pitman–Yor (Pitman and Yor, 1997) is a sequential process for label assignment

whose allocation probabilities depend on a precision parameter α, on a discount

parameter σ, and on the size of the clusters previously detected. While we have

introduced the sequential allocation scheme in the previous two Chapters, we re-state

it here to ease readability. Suppose thatX1, . . . , Xn are the taxon assignments for the

DNA sequences in our library of barcodes at a given rank (such as phylum or class).

Specifically, these sequences identify Kn “ k distinct taxa, named X˚
1 , . . . , X

˚
k , with
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frequencies n1, . . . , nk and
řk

j“1 nj “ n. Then, the probability that the pn ` 1qth

sequence belongs to the jth of the known taxa is

ppXn`1 “ X˚
j | X1, . . . , Xnq “

nj ´ σ

α ` n
, (4.2)

for j “ 1, . . . , k, while the probability of observing a new taxon is

ppXn`1 “ “new” | X1, . . . , Xnq “
α ` σk

α ` n
, (4.3)

where α ą ´σ and σ P r0, 1q. Figure 4.1 sketches the mechanism when n “ 19

sequences and k “ 4 different groups are observed. High values of α or values of

σ close to 1 lead to a high probability of discovering a new taxon. The probability

that a sequence is assigned to taxon label X˚
j increases with its abundance nj. This

process allows barcodes to be clustered together a priori by being assigned to the

same existing or newly detected taxa. Both parameters can be easily estimated from

the data via empirical Bayes if taxonomic frequencies n1, . . . , nk are observed. Refer

to the Supporting Information for details, and to Favaro et al. (2009) and De Blasi

et al. (2015) for a general overview.

4.2.2 Notation and taxonomic structure

A taxonomic library can be represented as a tree with branches of length L ě 2, where

DNA sequences are uniquely associated with one leaf. We denote such a library as

Dn “ pXi,Yiq
n
i“1, where n is the number of sequences, Xi “ pXi,ℓq

L
ℓ“1 indicates the

taxonomic labels of the ith sequence and Yi is a representation of the associated

DNA. For example, the library we use in our application is fully annotated up to

rank L “ 7, where L represents the species level. Figure 4.2 displays an example of

a taxonomic tree where sequences are classified into order, family and genus. Blue

circles indicate nodes associated with at least one DNA sequence, while undiscovered

branches are coloured in grey. The labels at a given level ℓ, namely X1,ℓ, . . . , Xn,ℓ,
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Figure 4.1: Example of a Pitman–Yor process with n “ 19, α “ 1, σ “ 0.25
and Kn “ 4. Taxon names are reported on top of the circles, and frequencies
of appearance are written on the right to the blue DNA sequences, respectively.
Fractions in black denote the taxon probabilities for the orange DNA sequence. For
example, the probability of observing the butterfly-shaped taxon X˚

1 is pn1 ´σq{pα`

nq “ p10 ´ 0.25q{p19 ` 1q “ 39{80. The probability for the unknown question mark
taxon is pα ` σkq{pα ` nq “ p1 ` 4 ˆ 0.25q{p19 ` 1q “ 1{10.

take values in the space Xℓ of distinct taxa. Given their discrete nature, multiple

Xi,ℓ can be associated with the same taxon. These realizations, which we denote as

X˚
1,ℓ, . . . , X

˚
kℓ,ℓ

, are the nodes in our hierarchical taxonomy, with kℓ being their total

observed number at level ℓ. For example, the 28 sequences in Figure 4.2 identify two

taxa at the order level: one that has a butterfly-type morphological trait, X˚
1,1, and

one with a bee-type trait, X˚
2,1. Thus, k1 “ 2. The beetle-shaped insect node instead

represents a potential order unobserved in the library.

Due to the tree structure of the taxonomy, each generic node xℓ at level ℓ has a

unique parent at level ℓ´1, denoted as papxℓq. In Figure 4.2, for instance, papX˚
1,2q “

X˚
1,1 and papX˚

1,3q “ papX˚
2,3q “ X˚

1,2. For coherence, assume that the tree is rooted,

namely papx1q “ x0 for any x1 P X1. Each node in the tree is linked to multiple taxa

at lower ranks. Let ρnpxℓq be the set of observed nodes xℓ`1 for which papxℓ`1q “ xℓ

when n sequences are observed,Knpxℓq “ |ρnpxℓq| be its cardinality andNnpxℓq be the

number of DNA sequences belonging to xℓ. In Figure 4.2, ρnpX˚
1,2q “ tX˚

1,3, X
˚
2,3u and

KnpX˚
1,2q “ 2, while ρnpx0q “ tX˚

1,1, X
˚
2,1u andKnpx0q “ 2 for the order level. Finally,

the size of a node in our representation is determined as a sum of the number of
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Figure 4.2: Example of a three-level taxonomic library under our model. On the
bottom-left corner of every node, we report the number of DNA sequences linked
to it. The total sample size of this example is n “ 28. Circles in blue indicate
nodes linked to leaves with observed DNA sequences, while grey circles show all
the possible missing or undiscovered branches, labelled with a question mark on the
top-right corner. Variation in insect colour along each branch and across branches
indicate DNA and morphological similarities and differences, respectively.

sequences associated with all leaves connected to it. For example, NnpX˚
1,2q “ 8, and

NnpX˚
1,1q “ 12. The quantities pap¨q, ρnp¨q, Knp¨q and Nnp¨q are the key ingredients

upon which we build our taxonomic prior in equation (4.1).

4.2.3 Taxonomic prior

The first step in our analysis consists of specifying a flexible prior for the frequencies

of occurrence of different types of organisms at each taxonomic rank ℓ, including

organisms of “new” types. In particular, we incorporate the Pitman–Yor process

allocation probabilities in equations (4.2) and (4.3) into the tree structure. Let αℓ

and σℓ denote the allocation parameters for level ℓ, with αℓ ą ´σℓ and σℓ P r0, 1q.

Write X
pnq

¨,ℓ “ pXi,ℓq
n
i“1 as the sequence of taxonomic labels observed at level ℓ. Then,

the taxon of sequence n` 1 at level ℓ, conditioned on it being allocated to node xℓ´1

at level ℓ ´ 1, has probabilities

ppXn`1,ℓ “ X˚
j,ℓ | Xn`1,ℓ´1 “ xℓ´1,X

pnq

¨,ℓ q “
NnpX˚

j,ℓq´σℓ

αℓ`Nnpxℓ´1q
, (4.4)
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if the node X˚
j,ℓ is such that papX˚

j,ℓq “ xℓ´1, and

ppXn`1,ℓ ““new” |Xn`1,ℓ´1 “xℓ´1,X
pnq

¨,ℓ q“
αℓ`σℓKnpxℓ´1q

αℓ`Nnpxℓ´1q
, (4.5)

if the node is new and originates from xℓ´1. The structure of equations (4.4) and (4.5)

is the same as the one in equations (4.2) and (4.3), with the only difference being

that nodes at ℓ are generated from their parent-specific process. The level-specific

parameters αℓ and σℓ are important in allowing diversity to vary with taxonomic

rank. Similarly to the one-level case discussed in Section 4.2.1, these parameters will

be estimated based on the data. See Appendix C.

4.2.4 DNA sequence likelihood

The second step to build the predictive rule in equation (4.1) is to specify a distribu-

tion for the DNA sequences. We do this by adopting a kernel-based approach that

flexibly accommodates different DNA representations.

As depicted in Figure 4.2, a query sequence Xi is uniquely associated with one

leaf of the taxonomic tree. Recalling that x “ px1, . . . , xLq denotes a taxonomic

branch whose leaf is xL P XL, we let

pYi | Xi “ x,θxL
q
ind
„ KpYi;θxL

q, (4.6)

for every sequence i “ 1, . . . , n, where KpYi;θq is a kernel depending on parameters θ

representing the likelihood of sequence data Yi, and θxL
is a collection of leaf-specific

parameters. Implicitly, we assume that all DNA sequences associated with leaf xL

are independent and identically distributed as Kp¨;θxL
q. Table 4.1 provides three

examples of multinomial-type kernels when sequences are aligned and when they are

not. Here, alignment implies that all the sequences are pre-processed to have the

same length p so that the nucleotides at each position s “ 1, . . . , p are meaningfully
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Table 4.1: Examples of multinomial kernels for the DNA sequences. The column
sequences specifies whether the sequences in the library are aligned or not. Column
kernel type is the type of kernel chosen to model the DNA. Columns likelihood
and prior for θxL

are the likelihood ad the prior in each model, with dir indicating
the probability density function of the Dirichlet distribution. Nκ is the set of all κ-
mers on which the sequence is decomposed. In the aligned case, this is a set of
monomers N1 “ tA,C,G,Tu. The quantity 1tYi,s “ gu is an indicator equal to one if
Yi,s “ g and zero otherwise.

sequences kernel type likelihood prior for θxL

Not aligned κ-mers
ś

gPNκ
θ
ni,g
xL,g dirpξxL

q

Aligned Product
śp

s“1

ś

gPN1
θ
1tYi,s“gu
xL,s,g

ś

sdirpξxL,sq

Aligned κ-Product
śp

s“1

ś

gPNκ
θ
1tYi,s“gu
xL,s,g

ś

sdirpξxL,sq

comparable. Then, Xi,s is the nucleotide in the sth position of the ith query sequence,

and θxL,s,g is the probability that nucleotide g P N1 “ tA, C, G, Tu is seen at s for

taxon xL. Assuming independence across locations s as a simplifying assumption

to improve computational efficiency in constructing a probabilistic classifier, the

resulting kernel is a product of multinomials with location-specific parameters.

When sequences are not aligned, each has its own length pi. A viable option is to

use a κ-mer decomposition. This amounts to counting the number of times all pos-

sible 4κ substrings of length κ appear within the sequence. We denote as Nκ the set

of all κ-mers of length κ. For instance, 3-mers live in N3 “ tAAA, ACG, AGT . . .u,

with a total of 43 “ 64 substrings. In Table 4.1, ni,g “
řti

s“1 1tYi,s “ gu denotes the

number of times a κ-mer g P Nκ appears in the ith sequence, with ti “ pi ´ κ ` 1

being the total number of κ-mers observed when the length is pi. We model these

counts as the output of a multinomial distribution, where θxL,g is the probability of

κ-mer g at taxon xL. The κ-mer length parameter κ is chosen a priori as a modeling

choice and usually requires adequate tuning. Finally, if sequences are aligned, it

is also possible to combine the two kernels by considering a κ-mer/location-specific

multinomial distribution. For example, choosing a 2-Product kernel for a sequence

69



AATGTA means that the realizations of the multinomial are AA in the first location,

AT in the second, TG in the third, and so on. This approach allows to better capture

site dependencies but bears heavy computational costs for values of κ greater than

2.

The choice of kernel depends on the application and the data. For example,

insect DNA sequences can be easily aligned via Hidden Markov models (Eddy, 1995),

while fungal sequences often come without alignment due to their higher intrinsic

variability. Irrespective of the structure of the data, our proposed multinomial kernels

have the advantage of simplicity in computation, with the posterior distribution for

θxL
obtained in analytic form by adopting conjugate Dirichlet priors as in Table 4.1.

Computational efficiency is a critical issue both in training and in classifying very

large numbers of sequences, making it intractable to consider elaborate likelihoods

derived from realistic generative models of nucleotide sequences.

4.2.5 Prediction rule

The prior on the tree and the DNA sequence likelihood defined so far allow us to

predict the set of labels Xn`1 for the query sequence Yn`1. BayesANT does this

in bottom-up and top-down steps. In the bottom-up step, we use equations (4.4),

(4.5) and (4.6) to determine the posterior probability that Yn`1 belongs to any

leaf in the tree. These include both the observed and the new taxa at the lowest

level, as illustrated in Figure 4.21. Then, probabilities of higher nodes are computed

aggregating upward. In the top-down step, instead, BayesANT predicts a branch by

iteratively choosing the child node with the highest probability at each level, starting

from the root.

Let πn`1pxq “ ppXn`1 “ x | Xpnqq be the prior probability for branch x after

1 Under the assumption that a new node at level ℓ automatically creates a new node at all levels
ℓ ` 1, . . . , L below, the total number of potentially unobserved leaves is equal to the number of
nodes up to L ´ 1 plus 1
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having observed all labels Xpnq. By the chain rule, this is equal to the product of the

prior conditional probabilities in equations (4.4) and (4.5) of all nodes in the branch,

which is

πn`1pxq “ ppXn`1,1 “ x1 | X
pnq

¨,1 q

L
ź

ℓ“2

ppXn`1,ℓ “ xℓ | Xn`1,ℓ´1 “ xℓ´1,X
pnq

¨,ℓ q. (4.7)

Equation (4.7) corresponds to the prior taxon probability in equation (4.1). Notice

that if xℓ “ “new” at some ℓ, the conditional probabilities at lower nodes are equal

to 1. But then, the probability that Xn`1 is associated to branch x conditioned on

the DNA sequence Yn`1 and Dn, namely equation (4.1), is

pn`1pxq “ ppXn`1 “ x | Yn`1,Dnq 9 πn`1pxq

ż

KpYn`1;θxL
qppθxL

|DnqdθxL
. (4.8)

The integral in equation (4.8) is the posterior predictive distribution of DNA

sequenceYn`1 with respect to the posterior of θxL
. When xL “ “new”, this posterior

is equal to the prior, i.e. ppθxL
|Dnq “ ppθxL

q, since no sequence for xL is observed.

The convenient property of the models in Table 4.1 is that both the prior and the

posterior predictive distribution have simple and easy-to-compute analytic forms.

Once equation (4.8) has been evaluated for all leaves, the probabilities of higher

nodes in the taxonomy can be easily derived via upward aggregation. Then, we

predict the taxa by starting from the root of the tree and recursively selecting the

child node with the highest probability. Specifically, the predicted sequence of taxa

x˚ “ px˚
ℓ qLℓ“1 for the DNA sequence at n ` 1 satisfies

x˚
ℓ “ argmaxxℓPρnpx˚

ℓ´1q

ÿ

x: xLPLnpxℓq

pn`1pxq, (4.9)

where tx : xL P Lnpxℓqu is the set of all branches x “ pv1, . . . , xLq whose leaves xL

are linked to node xℓ in a library of n DNA sequences.
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4.2.6 Hyperparameter tuning

The hyperparameters ξxL
of the multinomial kernel play a fundamental role in novel

species recognition. As detailed above, when xL “ “new”, then equation (4.8) is a

prior predictive probability, since no sequence is observed for xL and thus ppθxL
|

Dnq “ ppθxL
q. In such cases, prior hyperparameters should contain information

regarding the taxonomic branch and level where novelty appears. Uniform priors may

be unreasonably vague, leading to underestimation of the prior predictive probability

of novel taxa relative to the true proportion. Thus, we tune each ξxL
as follows.

Consider a taxon xL´1 at level L´ 1. If xL´1 is not “new”, the hyperparameters ξxL

of all the leaves xL P LnpxL´1q linked to it - including the new one - are all equal,

and they are obtained via method of the moments from the DNA sequences Yi with

Xi,L´1 “ xL´1. If instead xL´1 is a “new” node and the last not novel node in its

branch is xℓ at level ℓ ď L ´ 1, the method of the moments is applied on the set of

sequences Yi such that Xi,ℓ “ xℓ. This ensures borrowing of information between the

branches when the novelty appears at higher levels in the taxonomy. Moreover, this

approach tailors the prior predictive distribution of a node to the intrinsic location-

specific nucleotide variability of the sequences linked to it. Thus, novelty probability

is high in a node if the query is coherent with the observed variability at that node

but is not sufficiently similar to any of the training sequences linked to the children

nodes in terms of the kernel. For mathematical details on the method of the moments

applied to the multinomial kernels of Table 4.1, see Appendix C.

4.2.7 Calibration of prediction probabilities

Misspecification of a Bayesian model, due to inaccuracies in the prior and/or likeli-

hood function, may lead to predictive probabilities that are not sufficiently well cal-

ibrated to accurately capture predictive uncertainties (Grünwald and van Ommen,

2017; Miller and Dunson, 2019). Given the complexity of the true data-generating
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likelihood underlying DNA barcoding data, and the necessity of using a simple like-

lihood for computational tractability, some degree of misspecification is inevitable.

We apply a simple re-calibration approach to adjust the predictive probabilities used

in equation (4.9) for misspecification.

In particular, we post-process the prediction probabilities in equation (4.8) by

exponentiating them by a coefficient ρ P p0, 1s and later renormalizing. Then, the

new probabilities for the pn ` 1qth sequence are

p̃n`1pxq “
pn`1pxqρ

ř

x1 pn`1px1qρ
, (4.10)

and can be used in place of pn`1pxq in equation (4.9). Such a strategy does not alter

the ranking of the original probabilities since the transformation is monotonic. More-

over, if pn`1pxq “ 1, then also p̃n`1pxq “ 1. This implies that we do not substantially

alter the prediction whenever the BayesANT is certain about a taxon. Choices for

ρ can be adopted via cross-validation on a hold-out subset of the training library

following strategies such as the ones described in (Guo et al., 2017). Specifically,

prediction probabilities are calibrated if the average probability for the predicted

nodes is equal to the classification accuracy (Somervuo et al., 2016). For example, if

90% of the sequences are correctly classified, ideally the average classification proba-

bility is approximately 0.9. An average value of 0.5 and 0.99, instead, means that the

algorithm is too conservative when right and too confident when wrong, respectively.

In the application discussed in this paper, we select ρ “ 0.1 and ρ “ 0.06 depending

on the testing scenario.
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4.3 Results

4.3.1 The FinBOL library

The Finland Barcode of Life initiative2 (FinBOL) is a DNA barcoding library that

contains reference sequences with highly reliable taxonomic annotations for the arthro-

pod species of Finland. The data have been constructed placing substantial effort

on barcode quality thanks to the collective effort of about 150 taxonomists. Biologic

material was collected from previously identified specimens conserved in museums

or private collections, and later processed via PCR sequencing. For a thorough de-

scription of how the library was assembled and later tested, refer to Roslin et al.

(2022).

The version of the data we consider contains a total of 34, 624 DNA sequences an-

notated across seven taxonomic levels, namely class, order, family, subfamily, tribe,

genus and species. Reference annotations are based on the national checklist of

Finnish species (FinBIF, 2020) with the inclusion of dummy taxa whenever sub-

family and tribe were missing. The library has been globally aligned via Hidden

Markov Models using the HMMER software (Eddy, 1995). As a result, each se-

quence has a length of 658 base pairs, consisting of nucleotides “A”, “C”, “G” and

“T” and alignment gaps “-”. Other infrequent special characters are ignored and

treated as missing values for simplicity. Taxonomic labels in the data comprise 3

classes: Arachnida, Insecta and Malacostraca, appearing 1,842 and 32,781 and 1

times, respectively. The sequences are further divided into 21 orders, 476 families,

896 subfamilies, 1,355 tribes, 3,855 genera and 10,985 species, 3,025 of which have a

single reference sequence associated with them.

Figure 4.3 depicts the pairwise raw DNA similarities, calculated as the fraction

of locations with identical nucleotides, between 3,000 sequences randomly sampled

2 https://en.finbol.org/
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Figure 4.3: Pairwise DNA similarities between 3,000 randomly sampled sequences
from the FinBOL library. The blue and light blue boxes along the main diagonal
identify the orders and the families, respectively. Numbers on the left side represent
the frequencies for the five largest orders in the data. Darker tones of red indicate
higher similarity.

without replacement from the library. Each row/column represents the DNA similar-

ity between one sequence and all the other sampled ones, with darker tones indicating

higher similarities. Sequences are sorted alphabetically first by order and then by

family to ensure cluster separation. In particular, boxes in dark blue along the main

diagonal highlight the cross similarities within the orders, while boxes in light blue

refer to the families. On the left side of the Figure we report the name and the sizes

of the 5 most frequent orders, namely Araneae, Diptera, Coleoptera, Hymenotptera

and Lepidoptera. In an ideal setting, the within-taxon similarities along the main

diagonal should be higher than the cross-taxa ones. However, this is only true for

Lepidoptera and for the two largest families - Ichneumonidae and Tenthredinidae -

in Hymenoptera. Indeed, Diptera and Coleoptera are virtually indistinguishable, as

they show a similar within- and between-order similarity. Moreover, these two taxa

show a high cross-similarity with Lepidoptera, as indicated by the off-diagonal orange

rectangles. Overall, the average DNA similarity in the library is around 0.81, with a

standard deviation of 0.04, indicating that the sequences are highly homogeneous.
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Testing scenarios

We aim to evaluate the performance of the predictive taxa classification probabilities

produced by BayesANT. These probabilities should reflect whether the true taxa of

a test sequence are observed in training or not. In the first case, the ideal output

assigns a high or close-to-one probability to the true branch at every level, and a

near-zero one to all the other branches in the tree. In the second case, instead, if the

true affiliation of a sequence is observed for levels 1, . . . , ℓ and unobserved for levels

ℓ`1, . . . , L, we would like BayesANT to output a high probability for the true nodes

up to ℓ and the highest conditional probability to the “new” clade at level ℓ` 1. To

test our algorithm, we train the classifiers on a random subset of 80% of the FinBOL

data and predict the taxonomic affiliation for the remaining 20% of the sequences.

By construction, this procedure makes some taxa present in the training set only,

others in both the training and the test, and some solely in the test set. We refer to

this last category as to the “new”, the “novel” or the “unobserved” taxa, treating

the three terms as interchangeable synonyms.

We consider two testing scenarios summarized in panels (A) and (B) in Figure 4.4.

In the first, each sequence in the library has equal probability of being allocated to the

test set. This makes the taxonomic composition of the training and test set similar.

As a result, only a relatively small fraction of the taxa will be unobserved in training,

as is evident from both plots at the top of panels (A) and (B). In the second scenario,

we create the test set by stratified sampling: for each test observation, we first sample

the family, and then draw one sequence within that family. This assigns each family

an equal probability of being selected, irrespective of its frequency of appearance in

the data. Such a procedure yields a different composition between training and test,

resulting in many more test taxa unobserved in training. In total, the number of

barcodes whose true branch has at least one node unobserved in training is 884 in
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Figure 4.4: Panel (A): taxonomic composition of the training and the test libraries
in the two splitting scenarios. Panel (B): proportion of DNA barcoding sequences
pertaining to the larger orders in the data in both scenarios. The fractions highlighted
in dark blue refer to the barcodes which truly belong to the mentioned order but
whose true species is unobserved in training. The total number of sequences in each
scenario is 27, 699 in the training library and 6, 925 in the test.

scenario 1 and 2,672 in scenario 2, while the total number of query test sequences is

6,924 in each case. Furthermore, the proportion of test DNA sequences associated

with the most frequent orders differs from their training counterpart. For example,

30% of the sequences in the training library in scenario 2 are Lepidoptera and only

2.5% pertain to Hemiptera; in the test set, however, these fractions become 20% and

5%, respectively, with a much larger proportion of unknowns than is scenario 1. See

the bottom of Figure 4.4, panel (B).

4.3.2 Test results

BayesANT computes the probability of every node in the taxonomic tree, including

potential novel ones, for every test DNA sequence. The predicted annotation is the

taxonomic branch with the highest probability at every rank. These probabilities

express the uncertainty of the classification, and need to be well calibrated to be

reliable: for instance, if 90% of the sequences are correctly classified, then the av-

erage probability with which they are classified should be around 0.9. Ideally, we

would like to limit cases in which the algorithm is too confident when wrong and too

conservative when right; see the Materials and Methods section. Moreover, evalu-
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ating the performance of BayesANT requires a clear definition of correctness of the

classification under novel taxa. Suppose the true annotation of a test sequence shows

a taxon that is unobserved in training. In that case, the prediction outcome may

be the correct novel taxonomic leaf, or a new taxon but in an incorrect branch, or

a taxon observed in training. We consider the classification correct in the first case

and wrong otherwise. For example, if the true annotation of the test sequence is

Insecta -> Diptera-> Tephritidae -> Trypetinae -> Trypetini -> Acidia

-> Acidia cognata

but Acidia is a genus not observed in the training set, then the correct classification

up to the species rank is

Insecta -> Diptera -> Tephritidae -> Trypetinae -> Trypetini

-> New Genus in Trypetini

-> New Species in New Genus in Trypetini

since the novelty produces a new genus and automatically a new species linked to it.

As Acidia is not observed, necessarily also the species Acidia cognata is unseen

and the classification at the species level is correct only if BayesANT recognizes the

novel genus. An outcome such as

Insecta -> Diptera -> Tephritidae -> Trypetinae -> Trypetini -> Trypeta

-> New Species in Trypeta

is wrong but recognizes a novel leaf, while

Insecta -> Diptera -> Tephritidae -> Trypetinae -> Trypetini -> Trypeta

-> Trypeta zoe

is wrong since it predicts an observed species. When computing accuracy, the first

example is correct at the genus and species level, while the other two are not. Unlike

other approaches (e.g. see Edgar, 2018), this over-penalizes the cases when the

algorithm fails at predicting the correct novel clade.
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Figure 4.5 displays the prediction probabilities of BayesANT in both FinBOL

scenarios by plotting the relationship between the % cumulative probability and the

% cumulative accuracy at the species level. As the library is globally aligned, we

adopt a simple product-multinomial kernel in which the probabilities of nucleotides

“A”, “C”, “G” and “T” vary by loci and species. We treat the alignment gap “-”

as a missing value and ignore the likelihood contribution of the locations where it

appears. For an assessment of how these missing values affect the classification, see

the Supporting Information. The rank-specific parameters αℓ and σℓ are estimated

from the data and we report their values in Table 4.2. Operations were performed on

an AMDRyzen 3900-based dedicated server with 128GB of memory on Ubuntu 20.04,

R version 4.1.1 linked to Intel MKL 2019.5-075. Training the algorithm on 27,699

sequences took 1.7 minutes in scenario 1 (10,422 species) and 1.4 minutes in scenario

2 (9,490 species), while predicting the remaining 6,924 test queries took 10.2 minutes

on a single thread and 1.4 minutes on 24 separate threads in each scenario. See the

Supporting Information for additional details on computational time. In Figure 4.5,

the dashed diagonal indicates a perfectly calibrated output, while trajectories below

and above it imply over- and under-confidence, respectively. The dark blue lines

show that BayesANT produces well-calibrated predictive probabilities on the test

data, with a prediction accuracy equal to 85.2% and 70.6% from the test data and

an average prediction probability of 0.82 and 0.70 in Scenarios 1 and 2, respectively.

Results in scenarios 1 and 2 below are based on adjusting initial probabilities with

a temperature parameter ρ “ 0.1 and ρ “ 0.06, respectively. Both values were

chosen via standard cross-validation methods as follows. For a given training-test

split, we first randomly assign 20% of the training sequences to a hold-out validation

set. Then, we train the model on the remaining 80% of the training library and

evaluate the prediction probabilities for the validation sequences against a set of pre-

determined values for ρ. As a final step, we re-train the model on the full training set
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Figure 4.5: Calibration plot for the prediction of BayesANT at the species level
under both scenarios. The dashed diagonal line indicates perfect calibration, while
the percentages next to the points are the species accuracies in the test sets. Notice
that “All data” includes all the 6,925 query sequences in the test set, “New” refers to
those whose true taxon is not observed in training at some rank (884 in scenario 1,
2, 642 in scenario 2), while “Observed” restricts to the cases where the true taxonomy
is fully observed.

Table 4.2: Estimated Pitman-Yor parameters for each level in the FinBOL taxonomic
tree.

scenario param. class order family subfam. tribe genus species

1 αℓ 0.19 1.17 4.16 1.04 1.16 1.86 7.11
σℓ 0.00 0.01 0.12 0.00 0.00 0.05 0.00

2 αℓ 0.19 0.76 2.66 1.08 1.12 1.85 6.74
σℓ 0.00 0.03 0.13 0.00 0.00 0.07 0.00

and predict the test sequences using the value of ρ that yielded the best calibration

in the hold-out.

For the novel cases, the number of sequences predicted to belong to a “new”

leaf in Scenario 1 is 958, while their true number is 884. Of these 884 queries,

77.9% are correctly recognized as novel, and 31.1% are effectively correct up to the

species level included, with average probability equal to 0.44, as depicted by the

orange line in the left panel. This implies that, while the exact “new” leaf in the

taxonomy is generally challenging to retrieve due to insufficient signal in the dataset,
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BayesANT recognizes fairly well the potential novelty of the taxon of a sequence.

Similar results are obtained in Scenario 2. While accuracy is lower due to a higher

number of sequences with unobserved taxa, the predicted novel leaves are 2, 736

against 2, 672 truly “new”. Here, 93.8% are recognized novel, and 33.7% are placed

in the correct novel clade in the taxonomic tree. Verifying the effective novelty of the

predicted “new” branches requires carefulness and further investigation - for example,

by morphological assessment and more comprehensive reference barcode sequencing

of new samples collected at the same geographic location. For instance, training

BayesANT on a library of insects collected in Finland and using it to predict queries

collected from South Africa might lead to an overwhelming number of barcodes

labelled as “new” simply due to structural differences between the data, even if the

latter has a well-established taxonomy.

1
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Figure 4.6: Average DNA similarity between the test query sequences and the
predicted taxa when BayesANT incorrectly predicts a taxon observed in training.

In considering these taxonomic classification results, it is important to keep in

mind the limited information provided by the available nucleotide sequencing in the

COI gene. This information can be insufficient to assign certain query sequences

to the correct taxon accurately. As we described in Figure 4.3, for example, or-

ders Coleoptera and Diptera show a high cross-similarity. Indeed, these are orders

who appear to be harder to classify: in Scenario 1, 36.2% of the incorrectly classi-

fied sequences at the species level are Diptera, followed by Hymenoptera (23.5 %),

Coleoptera (16.7 %) and Lepidoptera (12.2 %). This is even more evident in Scenario
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2, with 29.9% of wrong prediction for Diptera and 19.6% for Coleoptera. Notoriously,

these are the most prone to barcoding mislabelling (Meier et al., 2006). For a full

breakdown of the accuracies across orders, refer to the Supporting Information.

To investigate whether this lack of information is a primary cause when BayesANT

produces incorrect classifications, we measured the average similarity between the

query test sequence and the sequences in the training, which are annotated with the

predicted taxa when the classification is wrong. Figure 4.6 shows the distribution of

these average similarities. Indeed, these are generally high, with an average of 0.983

under both Scenarios. This suggests that misclassification tends to be due to insuffi-

cient information to distinguish between the true taxon and an incorrect taxon that

is extremely close in the COI region to the query sequence, which sometimes even

leads to small discrepancies between barcode similarities and true taxonomic affilia-

tion. An example can be seen in Figure 4.7, which reports the pairwise DNA similar-

ity between the query test sequence FISYO1282-18 and the training barcodes whose

species are labelled as Allantus calceatus and Allantus basalis. In FinBOL, the true

species of the query sequence is Al. basalis, while BayesANT wrongly suggests that

the most likely species is Al. calceatus with a prediction probability equal to 0.942.

The resemblance between the orange picture and those referring to FISYO2086-18

and FISYO270-18 should be evident. However, the DNA barcodes suggest the op-

posite: the average similarity between the query and Al. calceatus is higher than the

one with Al. basalis, thus explaining the incorrect prediction. Indeed, such discrep-

ancies have led to the introduction of the Barcode Index Number system (BIN) to

cluster similar COI barcodes into OTUs. For example, all the sequences in Figure 4.7

fall into the same BIN called BOLD:ABZ8200. For an extensive discussion on the

topic, refer to Ratnasingham and Hebert (2013); Phillips et al. (2019).
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Figure 4.7: Pairwise DNA similarity between the test sequence FISYO1282-18
and the training barcodes belonging to the species Allantus basalis (19 sequences)
and Allantus calceatus (5 sequences) in scenario 1. Each dot represents a pairwise
similarity, with stacked dots indicating equality. The pictures in the blue boxes depict
the specimen from which the training barcodes associated with the blue points have
been sequenced. The orange box is the specimen of the test query, which is annotated
as Allantus basalis in FinBOL. The bottom-right corner reports the predicted species
probabilities returned by BayesANT. All pictures are publicly available at https://
www.boldsystems.org/ and licensed under CC BY-NC 3.0. License holder: Marko
Mutanen, University of Oulu.

4.3.3 Benchmarking

As the last step in our analysis, we benchmark the performance of BayesANT on the

FinBOL library against several alternatives in terms of accuracy. Table 4.3 reports

the results under both Scenarios. m-1 refers to the single location multinomial kernel

we adopted in our analysis above. While this is our method of reference due to its

simplicity and flexibility, it treats loci as independent. Dependence can be introduced

by adopting a 2-mer location kernel, m-2, where the support of the multinomial is

in tAA, AC, AT, . . . ,TTu and 2-mers are overlapping. To assess the advantage of

adopting a Pitman–Yor prior over the taxonomic tree, we also compare with an anal-

ysis that lets αℓ “ σℓ “ 0 at every level ℓ. This does not allow new species, and

the prior is the proportion with which each taxon appears in the library at every

rank. These methods are labelled as m-1, no new and m-2, no new in Table 4.3.
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Although sequences are aligned, we also test the performance of BayesANT under

the multinomial kernel over the κ-mer decomposition. In particular, k-5 and k-6

report accuracies and average prediction probabilities when fixing κ “ 5 and κ “ 6,

respectively. Finally, we benchmark all these alternatives against the popular RDP

classifier (Wang et al., 2007, version 2.13, 2020). While the number of taxonomic

classifiers is rather vast, we focus on RDP as it is a longstanding method that, simi-

larly to ours, relies on Näıve Bayes classification strategies and provides a minimum

standard for accuracy. In particular, we do not set a confidence cutoff for RDP, but

we consider its full classifications up to the species rank. This allows to benchmark its

calibration under wrong predictions, which necessarily happen when the sequences

are novel.

We first notice that no method is uniformly better or worse than the others,

except for the κ-mer kernels. This is likely because the library has been reliably

aligned. Aside from k-5 and k-6, performances in Scenario 1 are approximately

similar both in terms of prediction probabilities and accuracy. Minor differences are

found at the species level, where the inclusion of novel taxa leads to higher accuracy

for both m-1 and m-2. When new taxa are in the data, all methods other than

BayesANT have a lower percentage of correctly identified sequences in both scenar-

ios. Moreover, the algorithms show a similar behaviour in Scenario 2, which features

a much higher proportion of unobserved taxa in training, except the species level.

Here, BayesANT shows its advantage, as it attains a prediction that is 10% more ac-

curate than the RDP classifier. When we restrict to the species observed in training,

however, model m-1 shows an accuracy of 93.1% in Scenario 1 and 93.7% in Scenario

2, while RDP shows 95.3% and 95.9%, respectively. The better performance of RDP

over BayesANT under observed species can be explained by the latter having to

account for taxonomic novelty as well, which translates into evaluating probabilities

for a larger taxonomic tree. As such, BayesANT pays a price in terms of accuracy
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under observed taxa in favour of a much higher gain overall. Indeed, if we neglect

novelty in BayesANT by fixing α and σ to 0, the accuracies of m-1, no new on

the observed species are 95.5% and 96.7%. See the Supporting Information for com-

putational times and additional results on prediction accuracies, including a further

benchmarking of the algorithms when the size of the training library is progressively

lower.

Table 4.3: Overall predictive performances of DNA barcoding algorithms on the
FinBOL library under the two testing scenarios. Values report the % of DNA se-
quences correctly labelled, while values in parenthesis denote the average prediction
probabilities in the whole test set. Underlined values indicate the best performances.

scenario 1 - pure random split scenario 2 - stratified random split

model class order family subfamily tribe genus species class order family subfamily tribe genus species

m-1 100.0 99.9 98.6 97.5 96.0 92.1 85.2 99.8 97.0 82.6 80.8 79.7 75.3 70.6
(1) (1) (.98) (.96) (.94) (.91) (.82) (.99) (.97) (.87) (.83) (.8) (.77) (.7)

m-2 100.0 99.9 98.4 97.2 95.8 92.4 85.4 99.8 97.1 82.1 80.3 79.1 75.7 69.8
(1) (1) (.98) (.97) (.95) (.93) (.86) (.98) (.96) (.88) (.84) (.81) (.8) (.74)

m-1, no new 100.0 99.5 98.0 97.2 96.7 94.3 83.3 98.7 91.8 75.8 75.3 74.6 72.1 59.4
(1) (1) (.99) (.98) (.98) (.98) (.92) (1) (.98) (.91) (.89) (.89) (.88) (.78)

m-2, no new 100.0 99.5 97.5 96.7 96.2 93.8 83.2 96.8 89.3 73.8 73.3 72.8 70.8 59.1
(1) (1) (.99) (.98) (.98) (.98) (.91) (1) (.98) (.91) (.89) (.89) (.88) (.74)

k-5 99.5 96.4 92.8 91.6 91.1 89.4 79.8 96.1 80.6 66.3 65.9 65.7 65.0 57.3
(1) (.95) (.92) (.91) (.91) (.9) (.87) (.99) (.8) (.70) (.69) (.68) (.67) (.64)

k-6 99.4 94.9 92.0 91.0 90.7 89.6 80.3 95.9 77.2 66.8 66.4 66.2 65.6 57.5
(1) (.96) (.94) (.94) (.94) (.93) (.91) (.98) (.80) (.73) (.72) (.71) (.71) (.68)

rdp 100.0 99.6 97.9 97.1 96.7 94.2 83.1 99.6 95.1 77.8 76.9 76.1 72.9 58.9
(1) (.99) (.97) (.96) (.95) (.94) (.92) (.99) (.92) (.79) (.78) (.77) (.75) (.73)

4.4 Discussion

This article has proposed a new probabilistic taxonomic classifier for DNA barcod-

ing sequences, BayesANT, which has the key property of allowing one to build on

an existing taxonomic library probabilistically. This is motivated by the fact that

existing arthropod libraries are incomplete, containing reference DNA sequences for

a subset of the nodes of the taxonomic tree. The potential reasons for this lack of

reference barcodes are: insufficient sequencing, mislabelling and, in some extreme

cases, novelty for science itself. For example, it is estimated that approximately 1.5

million, 5.5 million, and 7 million species of beetles, insects, and terrestrial arthro-

pods, respectively, are either awaiting a proper description, do not have a reference
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sequence yet or are simply undiscovered (Stork, 2018), with estimates varying every

year. BayesANT uses species sampling priors (Pitman, 1996) to allow for the dis-

covery of previously unobserved branches of the tree. As such, it avoids arbitrary

thresholds for novelty of other algorithms, thus characterizing uncertainty in all

aspects of taxonomic classification. Probabilistic forecasts providing accurate char-

acterizations of predictive uncertainty are said to be well calibrated (Somervuo et al.,

2016). BayesANT guarantees well-calibrated predictions through a cross-validation

approach.

Our method builds on a popular species sampling prior known as the Pitman-

Yor process (Pitman and Yor, 1997). In its standard formulation, this prior does

not take into account the taxonomic tree structure and instead treats all species as

exchangeable. However, by specifying a Pitman-Yor at each level of the tree, with

different parameters for each taxonomic rank, we obtain a highly flexible generative

probabilistic process that can predict the probability of a query sequence to belong

to different and potentially novel taxa at each level of the tree. By estimating the

Pitman-Yor parameters based on the training data, we allow the process to adapt to

existing knowledge about the level of diversity at each taxonomic rank.

Since taxonomic classification in ecology studies typically relies on sequencing

of a relatively short region of the genome, there is necessarily substantial uncer-

tainty in classification (Pentinsaari et al., 2020). For instance, different species often

have indistinguishable nucleotide sequences in the region being sequenced, making

it impossible to reliably distinguish sequences from such species relying on DNA

metabarcoding alone without supplemental morphological data. This can be seen in

Figure 4.7, which shows an example of both morphological and genetic variability

of OTU-based clusters. In this respect, the recent development of Amplicon Se-

quence Variants (ASVs; Callahan et al., 2017; Bokulich et al., 2018) appears to be a

promising direction to resolve these issues. ASV methods avoid the clustering step
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typical of OTUs, and provide better characterization of the biological variations in

a dataset. In turn, this leads to an increased number of unique sequences, which

BayesANT can easily handle through adequate tuning of the parameters α and σ in

the Pitman–Yor prior. For instance, a large number of singletons sequences at the

lowest level would lead to large values for σL and αL, thus favouring the prediction

of novel clades. Exploring the performance of our method on ASV datasets is an

interesting potential future direction. Another possibility would be to explore ways

to incorporate priors derived from phylogenetic analysis into the proposed structure.

This could better resolve the ambiguities in the data and add a further clustering

layer to the method.

The modelling choices made in building BayesANT reflect a balance between

flexibility and pragmatism in developing an efficient off-the-shelf algorithm that can

easily handle the classification of a large number of sequences. This is needed in our

motivating applications to biodiversity monitoring studies that routinely collect and

metabarcode samples from many different sites and multiple time points for each site.

In future research, it may be helpful to consider other modelling choices which mod-

ify the Pitman-Yor structure and/or choices of kernels considered here. For example,

instead of the simple multinomial kernels, it may be useful to explore pairwise sim-

ilarity and latent variable-based likelihoods, for example, using the projected κ-mer

decomposition of a sequence into a lower dimensional feature space. Another alterna-

tive is to specify multinomial kernels that better account for nucleotide dependencies

along the sequences without excessively burdening time and memory requirements.

These include, for example, mixture models as in Dunson and Xing (2009).

Taxonomic novelty due to missing branches in the reference libraries is discussed

in the literature (Lan et al., 2012; Edgar, 2013; Somervuo et al., 2017). Interpreta-

tion of the detected “new”, however, is fairly delicate and context-dependent, and it

requires further analyses on the sequenced DNA, such as the investigation on poten-
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tial sequencing errors. Moreover, novelty is inherently related to the tree structure of

the annotations in the library, which sometimes does not reflect the genetic distances

between the barcodes in the nodes at a rank. The within- and the cross-taxa similari-

ties of Diptera, Lepidoptera and Coleoptera depicted in Figure 4.3 are an example. In

BayesANT, these distances are indirectly taken into account by the choice of kernel,

which, under sufficient flexibility, can correctly discriminate between taxa. However,

the creation of new clades is still biased toward the nodes that show a higher within-

genetic variability (e.g. Diptera) than those that are more similar (like Lepidoptera).

This is an issue shared by all taxonomic classifiers due to the current taxonomic

system, and adjusting for this bias would require additional information e.g. from

morphology. One potential solution in BayesANT is to specify node-specific Pitman–

Yor prior parameters to counter the low/high generic variability with higher/lower

prior probabilities for novel clades.
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5

Conclusion

Since the introduction of the Dirichlet process 50 years ago (Ferguson, 1973), Bayesian

nonparametric species sampling models have experienced rich theoretical and method-

ological developments in a variety of settings. In this dissertation, we have presented

three different contributions to the Bayesian nonparametric field by emphasizing the

usefulness of species sampling model-based frameworks in ecological applications.

Our overarching goal was to increase the appeal of Bayesian nonparametric methods

in applied settings, especially when the number of clusters, or novel species, is of pri-

mary interest. To this extent, there are several possible extensions to the approaches

presented, both theoretical and practical, which we now summarize.

In Chapter 2, we have introduced the Stirling-gamma distribution, and we have

illustrated how its adoption as a prior for the precision parameter in Dirichlet process

mixtures leads to greater posterior robustness. This is desirable when one is inter-

ested in the posterior partition, like the ant sub-communities we have described in

our illustrative application. There exists a rich literature on stochastic block models

and their nonparametric extensions. In particular, Legramanti et al. (2022) recently

introduce a general extended stochastic block model framework, where community
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detection can be further refined through the incorporation of node covariates in the

exchangeable partition probability function of a species sampling model prior. In-

terestingly, in the covariate-dependent Dirichlet process case, the Stirling-gamma

retains the conjugacy property discussed in Proposition 8. This suggests that the

additional robustness granted by the Stirling-gamma can also be included in more

complex dependent Dirichlet process mixtures model settings.

One important debate in recent years revolves around the consistency of Gibbs-

type process mixture models in retrieving the “true” number of components from

which the data are generated. In certain specific settings, Dirichlet process mixtures

with a fixed precision parameter α have been shown to lack such a property (Miller

and Harrison, 2014), whereas a random α can lead to consistency (Ascolani et al.,

2022). Exploring the behavior of the Stirling-gamma process in such a context is

an interesting future direction, especially in light of its potential connection with

mixture models with a prior on the number of components discussed in Section 2.5.

In Chapter 3, we have presented a general sequential discovery framework to

model accumulation curves, which is inspired by species sampling models. Its ad-

vantage lies in the fact that it is a simple and flexible framework that can capture

a wide variety of accumulation curve trajectories, both allowing for finite and in-

finite species richness. This is especially useful, as we have shown to determine

the number of potential novel OTUs one may find after having reached a certain

sequencing depth. Similar tasks have also been performed within a more general fea-

ture sampling model framework (Masoero et al., 2021; Camerlenghi et al., 2022). One

interesting extension is to consider a multivariate sequential discovery framework to

model multiple locations, relying on, for example, Indian buffet-type constructions

(Griffiths and Ghahramani, 2011). See Battiston et al. (2018) for a description of

feature sampling models from a species sampling perspective.

Finally, Chapter 4 discusses how species sampling models can lay the foundations
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of efficient classification tools that account for taxonomic novelty. This is a crucial

factor to account for when classifying DNA sequences since many species do not

have a reference DNA barcode yet or are simply unknown to science. In this respect,

BayesANT, our Bayesian nonparametric taxonomic classifier, is able to perform ac-

curate predictions, especially when the taxa of the test sequences are unobserved in

training. While BayesANT scales surprisingly well, it models DNA sequences using a

relatively simple Dirichlet-multinomial kernel. Exploring more advanced approaches

is an interesting and useful direction one can follow.
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Appendix A

Supplementary material for Chapter 2 - Bayesian
nonparametric modeling of latent partitions via

Stirling-gamma priors

This Appendix contains the proofs for all the statements in Chapter 2, additional

simulations, and a rejection algorithm to sample from the Stirling-gamma distribu-

tion. It is divided as follows. Section A.1 contains some preliminary lemmas that

are useful for the main proofs. Section A.2 reports the proofs of the statements.

Section A.3 presents additional useful theoretical results. Section A.4 presents the

proofs for the formulas of the normalizing constants in Addendum I. Section A.5

describes an algorithm to generate random samples from the Stirling-Gamma dis-

tribution. Section A.6 presents an additional simulation study on the population of

partition framework. Throughout the Chapter, we will write that apnq „ bpnq as

n Ñ 8 to indicate that limnÑ8 apnq{bpnq “ 1. While „ indicates “is distributed as”

in the main document, here we employ such a slight abuse of notation to ease the

readability of the statements below.
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A.1 Preliminary lemmas

This Section reports some preliminary lemmas that will be useful for the proofs

presented in Section A.2. We begin by recalling two asymptotic approximations for

the gamma function:

Γpmq „
?
2πe´mmm´1{2, m Ñ 8; (A.1)

Γpzq „ 1{z, z Ñ 0. (A.2)

Equation (A.1) is the famous Stirling approximation (Abramowitz and Stegun, 1972,

equation 6.1.37, p257). Equation (A.2) instead comes from taking the limit for z Ñ 0

to the product formula for the gamma function, since limzÑ0 Γpzq “ limzÑ0 Γpz `

1q{z “ limzÑ0 1{z. Then, the following lemmas hold.

Lemma 27. For any a P R, we have

lim
mÑ8

ˆ

a

logm
` m

˙
a

logm

“ ea

Proof. By letting x “ logm and collecting the term ex, the limit simplifies as

limxÑ8 e
apae´x{x ` 1qa{x “ ea.

Lemma 28. For any x, z ą 0, we have

lim
mÑ8

pxz{ logmqm

px{ logmqm
“ zezx´x

Proof. Recall that the ascending factorial can be defined as pxqa “ Γpx ` aq{Γpxq.

We can then rewrite the limit as

lim
mÑ8

pxz{ logmqm

px{ logmqm
“ lim

mÑ8

Γpx{ logmq

Γpxz{ logmq
ˆ

Γpxz{ logm ` mq

Γpx{ logm ` mq
.

We study each fraction separately. By relying on the approximation in equation (A.2),

we have

Γ

ˆ

a

logm

˙

„
logm

a
, m Ñ 8, (A.3)
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for any a ą 0. Thus, the limit of the first fraction is equal to

lim
mÑ8

Γpx{ logmq

Γpxz{ logmq
“ lim

mÑ8

logm

x

xz

logm
“ z.

From equation (A.2), we can also write that

Γ

ˆ

a

logm
` m

˙

„
?
2πe´ a

logm

ˆ

a

logm
` m

˙
a

logm
`m´ 1

2

, m Ñ 8, (A.4)

for any a ą 0. But then, thanks to the result in Lemma 27, the second fraction

simplifies as

lim
mÑ8

Γpxz{ logm ` mq

Γpx{ logm ` mq

“ lim
mÑ8

e
´xz`x
logm

ˆ

xz

logm
` m

˙
xz

logm
`m´ 1

2
ˆ

x

logm
` m

˙´ x
logm

´m` 1
2

“ lim
mÑ8

ˆ

xz

logm
` m

˙
xz

logm
ˆ

x

logm
` m

˙´ x
logm

ˆ

xz ` m logm

x ` m logm

˙m´ 1
2

“ lim
mÑ8

ˆ

xz

logm
` m

˙
xz

logm
ˆ

x

logm
` m

˙´ x
logm

“ ezx´x

This completes the proof.

Lemma 28 will be useful when proving the convergence of Km to the negative

binomial distribution under the Stirling-gamma process. The next two lemmas char-

acterize the asymptotic behavior of the normalizing constant of the Stirling-gamma

distribution.

Lemma 29. The following asymptotic approximation holds for any x ą 0:

1

plogmqa

xa´1

tpx{ logmqmub
„ gpm, a, bqxa´b´1e´bx, m Ñ 8,

where gpm, a, bq “ p2πq´b{2plogmqb´aebmm´bm`b{2.
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Proof. This asymptotic behavior follows from equations (A.3) and (A.4). In partic-

ular, by expressing the ascending factorial in the denominator as a ratio of gamma

functions, we have

lim
mÑ8

1

plogmqa

xa´1

tpx{ logmqmub

“ lim
mÑ8

p2πq
´ b

2 plogmq
b´a e

bx
logm

`bm

ˆ

bx

logm
` m

˙´ bx
logm

´bm` b
2

xa´b´1

“ lim
mÑ8

p2πq
´ b

2 plogmq
b´a ebmm´bm` b

2 xa´b´1e´bx,

where the simplifications follow from bx{ logm Ñ 0 and the limit in Lemma 27. We

complete the proof by calling gpm, bq “ p2πq´b{2plogmqb´aebmm´bn`b{2 the part that

depends on m and b and not on x.

Lemma 30. When a, b ą 0 and 1 ă a{b ă m, the following limit holds for the

normalizing constant of a Stirling-gamma distribution:

lim
mÑ8

gpm, a, bq

Sa,b,m

“
ba´b

Γpa ´ bq
,

where gpm, a, bq is defined in Lemma 29.

Proof. The proof is a direct consequence of Lemma 29 and of the monotone conver-

gence theorem. Consider the change of variable α “ x{ logm. Then, the normalizing

constant can be rewritten as

Sa,b,m “

ż

R`

αa´1

tpαqnub
dα “

ż

R`

1

plogmqa

xa´1

tpx{ logmqnub
dx.

Provably, both integrands are monotonically decreasing in m. By monotone con-

vergence theorem, this ensures that the limit and the integral can be interchanged.

Invoking the approximation of Lemma 29, we have

lim
mÑ8

gpm, a, bq

Sa,b,m

“ lim
mÑ8

gpm, a, bq

gpm, a, bq
ş

R`
xa´b´1e´bxdx

“
ba´b

Γpa ´ bq
.
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Notice that Sa,b,m ă 8 when 1 ă a{b ă m, as we show in Proposition 32 below.

We conclude the section by providing an expression for the Laplace transform of

the distribution for Km conditional on α.

Lemma 31. Let θ1, . . . , θm be a sample from a Dirichlet process with precision pa-

rameter α. The conditional Laplace transform of the number of clusters Km is

Epe´tKm | αq “
pαe´tqm

pαqm
, t ě 0.

Proof. The result follows directly from the relationship between the ascending fac-

torial and the signless Stirling numbers of the first kind detailed in Charalambides

(2005):

Epe´tKm | αq “

m
ÿ

k“1

e´tk αk

pαqm
|spm, kq| “

1

pαqm

n
ÿ

k“1

pαe´t
q
k
|spm, kq| “

pαe´tqm

pαqm
,

for any t ą 0.

A.2 Main proofs

A.2.1 Proof of Proposition 1

Proof. To prove the convergence in distribution, it is sufficient to show that the

Laplace transform of the quantity α logm converges to that of a gamma distribution.

In particular, for any t ą 0 we have

Epe´tα logm
q “

ż

R`

1

Sa,b,m

e´tα logm αa´1

tpαqmub
dα “

ż

R`

1

Sa,b,m

e´tx

plogmqa

xa´1

tpαqmub
dx,

where the second equality comes from changing the integration variable to x “

α logm. By relying on the bounded convergence Theorem, we can interchange the

integral and the limit when m Ñ 8. Thus, from Lemma 29 and 30, we can write
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that

lim
mÑ8

Epe´tα logm
q “ lim

mÑ8

gpm, a, bq

Sa,b,m

ż

R`

xa´b´1e´pb`tqxdx

“
ba´b

Γpa ´ bq

ż

R`

xa´b´1e´pb`tqxdx “

ˆ

b

b ` t

˙a´b

,

which is the Laplace transform of a Gapa ´ b, bq random variable.

A.2.2 Proof of Proposition 2

Proof. By definition of expected value, we have

Epαs
q “

1

Sa,b,m

ż

R`

αa`s´1

tpαqmub
dα “

Sa`s,b,m

Sa,b,m

,

where the integral at the numerator is finite if and only if 0 ă s ă mb ´ a. See

Proposition 32 for a proof.

A.2.3 Proof of Theorem 1

Proof. Let α „ Sgpa, b,mq in equation (1). Then,

PpΠn “ tC1, . . . , Ckuq “
1

Sa,b,m

"
ż

R`

αa`k´1

tpαqmubpαqn
dα

* k
ź

j“1

pnj ´ 1q!

Calling Va,b,mpn, kq “
ş

R`
αa`k´1{rtpαqmubpαqns´1dα and Va,b,mpn, kq “ Sa,b,m com-

pletes the proof.

A.2.4 Proof of Theorem 2

Proof. We begin by showing the shape of the probability mass function for Km. This

follows directly from the formula in Antoniak (1974). In particular,

PpKm “ kq “

ż

R`

PpKm “ k | αqppαqdα “
1

Sa,b,n

„
ż

R`

αa`k´1

tpαqmubpαqn
dα

ȷ

|spm, kq|

“
Va,b,mpm, kq

Va,b,mp1, 1q
|spm, kq|,
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for any k “ 1, . . . ,m. We now provide a formula for the mean and the variance of

the distribution above. First, recall that the expected value and the variance of Km

conditional on α are

EpKm | αq “ αtψpα ` mq ´ ψpαqu (A.5)

varpKm | αq “ αtψpα ` mq ´ ψpαqu ` α2
tψ1

pα ` mq ´ ψ1
pαqu, (A.6)

where ψpxq “ Γ1pxq{Γpxq is the digamma function and ψ1pxq is its derivative, called

trigamma function. The property that EpKmq “ a{b follows immediately from Dia-

conis and Ylvisaker (1979): writing η “ logα, we have

PpKm “ k | ηq 9 exptkη ´ Kpη,mqu,

with Kpη,mq “ log Γpeη `mq´ log Γpeηq. Thus, the associated conjugate prior in the

natural parametrization is ppηq9 exptτ0k0η ´ τ0Kpη,mqu. Moreover, we have that

dKpη, nq{dη “ eηtψpeη ` nq ´ ψpeηqu. From Theorem 2 in Diaconis and Ylvisaker

(1979), we have

EpKmq “ EtEpKm | ηqu “ E

"

d

dη
Kpη,mq

*

“ Ereηtψpeη ` mq ´ ψpeηqus “ k0.

Substituting again α “ eη and calling k0 “ a{b and τ0 “ b in the above proves the

statement.

To prove the expression for the variance, we rely on the law of iterated variances,

that is

varpKmq “ EtvarpKm | αqu ` vartEpKm | αqu.

Both terms can be expressed as a function of the quantity Da,b,m “ Erα2tψ1pαq ´

ψ1pα`mqus “ Et
řm´1

i“0 α2{pα`iqu. To simplify the expression, we rely on integration

by parts. Consider the following functions:

Ipαq “
αa`1

tpαqmub
, Mpαq “ ψpα ` mq ´ ψpαq,
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whose derivatives with respect to α are equal to

I 1
pαq “

pa ` 1q

α
Ipαq ´ bMpαqIpαq, M 1

pαq “ ψ1
pα ` mq ´ ψ1

pαq.

Then, the integral simplifies as

Da,b,m “ ´
1

Sa,b,m

ż

R`

M 1
pαqIpαqdα

“ ´
1

Sa,b,m

|MpαqIpαq|
8

α“0 ´
b

Sa,b,m

ż

R`

Mpαq
2Ipαqdα `

a ` 1

Sa,b,m

ż

R`

Mpαq

α
Ipαqdα

“ ´bEtα2Mpαq
2
u ` pa ` 1qEtαMpαqu

“ ´bEtα2Mpαq
2
u `

apa ` 1q

b

“ ´b

„

Etα2Mpαq
2
u ´

a2

b2

ȷ

`
a

b
.

Moreover, from equation (A.5), we can write

vartEpKm | αqu “ vartαMpαqu “ Etα2Mpαq
2
u ´ rEtαMpαqus

2

“ Etα2Mpαq
2
u ´

a2

b2

“
a

b2
´

Da,b,m

b
,

where the last equality comes from plugging in the new expression for Da,b,m. Finally,

from equation (A.6), we also have

EtvarpKm | αqu “ EtαMpαqu ` Etα2M 1
pαqu “

a

b
´ Da,b,m.

Combining the last two equalities in the law of iterated variance proves the result.

A.2.5 Proof of Theorem 3

Proof. The proof of convergence in distribution to the negative binomial relies on

Lemmas 28, 30 and 31. Substituting α “ x{ logm in the integral, the marginal
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Laplace transform of Km is

Epe´tKmq “ EtEpe´tKm | αqu “
1

Sa,b,m

ż

R`

pαe´tqm

pαqm

αa´1

tpαqmub
dα

“
1

Sa,b,m

ż

R`

pxe´t{ logmqm

px{ logmqm

1

plogmqa

xa´1

tpx{ logmqmub
dx

Then, the limit is

lim
mÑ8

Epe´tKmq “ lim
mÑ8

1

Sa,b,m

ż

R`

pxe´t{ logmqm

px{ logmqm

1

plogmqa

xa´1

tpx{ logmqmub
dx

“ lim
mÑ8

gpa, b,mq

Sa,b,m

ż

R`

ee
´tx´x´txa´b´1e´bxdx

“
e´tba´b

Γpa ´ bq

ż

R`

xa´b´1e´p1`b´e´tqxdx

“ e´t

ˆ

b

1 ` b ´ e´t

˙a´b

,

which is the Laplace transform of 1`Negbinpb{pb`1q, a´bq, whose probability mass

function is

PpK8 “ kq “
Γpa ´ b ` k ´ 1q

pk ´ 1q!Γpa ´ bq

ˆ

1

b ` 1

˙k´1ˆ
b

b ` 1

˙a´b

, k “ 1, 2, . . .

The limit and integral can be interchanged thanks to the bounded convergence the-

orem, since the Laplace transform is always bounded by 1.

A.2.6 Proof of Proposition 3

Proof. The proof follows directly from Lemma 28 and Lemma 31. In particular,

substituting α “ λ{ logm in the limit, we have

lim
mÑ8

Epe´tKmq “ lim
mÑ8

pαe´tqm

pαqm
“ lim

mÑ8

pλe´t{ logmqm

pλ{ logmqm
“ ee

´tλ´λ´t,

which is the Laplace transform of 1 ` Popλq.
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A.2.7 Proof of Proposition 4

Proof. The statement follows trivially from Bayes theorem:

ppα | Πn “ tC1, . . . , Ckuq 9 ppαq PpΠn “ tC1, . . . , Cku | αq 9
αa´1

tpαqnub

αk

pαqn
.

Therefore, pα | Πn “ tC1, . . . , Ckuq „ Sgpa ` k, b ` 1, nq. Notice that if a, b ą 0 and

1 ă a{b ă n, then also 1 ă pa ` kq{pb ` 1q ă n, since 1 ď k ď n. Thus, a proper

prior implies automatically a proper posterior.

A.2.8 Proof of Theorem 4

Proof. The proof is similar to the one of Proposition 4. In particular, we have that

ppα | Πn “ tC1, . . . , Ckuq 9 ppαq

N
ź

s“1

PpΠn,s “ tC1,s, . . . , Cks,su | αq9
αa´1

tpαqnub

α
řN

s“1 ks

tpαqnuN
,

which proves the statement.

A.2.9 Proof of Proposition 4

Proof. The proof naturally follows from equation (2.10) in Diaconis and Ylvisaker

(1979). Alternatively, we can derive the same result via Theorem 4, integrating over

α „ Sgpa ` Nk̄, b ` N,mq.

A.3 Additional results

A.3.1 Finiteness of the normalizing constant

Proposition 32. The normalizing constant of a Stirling-Gamma distribution, namely

Sa,b,m “

ż

R`

αa´1

tpαqmub
dα,

is finite if and only if a, b ą 0 and m P N with 1 ă a{b ă m.
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Proof. Let Sa,b,m “ S0,1
a,b,m ` S1,8

a,b,m, with Sℓ,u
a,b,m “

şu

ℓ
αa´1tpαqmu´bdα. To prove the

statement, it is sufficient to show that both integrals are finite. For S0,1
a,b,m, recall

that for 0 ă α ă 1 and b ą 0, we have tpαqmub “ αbt
śm´1

j“1 pα ` jqub ą αb, since

śm´1
j“1 pα` jq ě pm´ 1q! ě 1. This implies that S0,1

a,b,m ď
ş1

0
αa´b´1dα, which is finite

if and only if a{b ą 1. For S1,8
a,b,m, instead, recall that limαÑ8 α

mΓpαq{Γpα ` mq “ 1

for any m ě 1. But then, letting q1pαq “ αa´1tpαqmu´b and q2pαq “ αa´1´mb, we

have that limαÑ8 q1pxq{q2pxq “ limαÑ8tαmΓpαq{Γpα`mqub “ 1, which implies that

S1,8
a,b,m “

ş8

1
q1pαqdα ă 8 if and only if

ş8

1
q2pαqdα ă 8 by the limit comparison test.

The latter integral is finite if and only if a{b ă m and b ą 0. Both sides require

b ą 0, which in turn implies that also a ą 0. This completes the proof.

A.3.2 Theorem: convergence to a negative binomial via gamma prior

Theorem 33. In the same setting of Theorem 3, let α „ Gapa ´ b, b logmq. Then,

the following convergence in distribution holds:

Km Ñ K8, K8 „ 1 ` Negbin

ˆ

a ´ b,
b

b ` 1

˙

, m Ñ 8.

Proof. The proof follows similarly to the proof of Theorem 4 in the previous section,

substituting again α “ x{ logm in the integral:

lim
nÑ8

Epe´tKmq “ lim
mÑ8

ż

R`

pb logmqa´b

Γpa ´ bq

pαe´tqm

pαqm
αa´b´1e´αb logmdα

“ lim
mÑ8

ba´b

Γpa ´ bq

ż

R`

pxe´t{ logmqm

px{ logmqm
xa´b´1e´bxdx

“
e´tba´b

Γpa ´ bq

ż

R`

xa´b´1e´p1`b´e´tqxdx “ e´t

ˆ

b

1 ` b ´ e´t

˙a´b

,

which is again the Laplace transform of 1 ` Negbinpb{pb ` 1q, a ´ bq.
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A.3.3 Proposition: tail of the Stirling-gamma distribution

Proposition 34. The Stirling-gamma distribution α „ Sgpa, b,mq is heavy-tailed,

namely

lim
xÑ8

etxPpα ą xq “ 8.

Proof. The proof relies on the Stirling approximation of the Gamma function applied

to the ascending factorial. Following equation (A.1), we have

1

pxqm
“

Γpxq

Γpx ` mq
„

e´xxx´1{2

e´x´mpx ` mqx`m´1{2
„

1

px ` mqm
, x Ñ 8,

since limxÑ8tx{px ` mqux´1{2 “ e´m. This implies that

xa´1

tpxqmub
„

xa´1

px ` mqmb
„

1

xmb´a`1
, x Ñ 8,

because mb ą a by definition. But then, we write

lim
xÑ8

etxPpα ą xq “ lim
xÑ8

1

Sa,b,m

ş8

x
αa´1tpαqmu´bdα

e´tx
“ lim

xÑ8

1

Sa,b,m

xa´1tpxqmu´b

te´tx

“ lim
xÑ8

1

Sa,b,m

etx

txmb´a`1
“ 8,

where the second equality follows by looking at the ratio of the derivatives with

respect to x using L’Hôpital’s rule.

Corollary 35. Let pSgpαq denote the density of α „ Sgpa, b,mq, and pGapαq the

density of α „ Gapa ´ b, b logmq. The following limit holds:

lim
αÑ8

pSgpαq

pGapαq
“ 8.

Hence, a Stirling-gamma has a heavier right tail than the gamma distribution.
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Proof. Let C “ Γpa ´ bq{tSa,b,mpb logmqa´bu denote the ratio of the normalizing

constants. Then, the limit of the ratio of the densities is equal to

lim
αÑ8

pSgpαq

pGapαq
“ lim

αÑ8
C αa´1tpαqmu´b

αa´b´1e´αb logm
“ lim

αÑ8
C α

beαb logm

pα ` mqbm
“ 8.

This implies that the tail of the gamma distribution decays faster than that of the

Stirling-gamma.

A.4 Proofs of the results in Addendum I

A.4.1 Proof of Theorem 12

We break down the proof of Theorem 12 into three steps to ease readability. First, we

prove that the quantity αa´1{tpαqmub can be rewritten as a sum of partial fractions

with Lemma 36. Second, we illustrate how this decomposition is useful to evaluate

the normalizing constant integral via Lemma 37. Then, the proof of the statement

follows using Faà di Bruno’s formula.

Lemma 36. Let a and b be integers. Then, we can write

αa´1

tpαqmub
“

m´1
ÿ

j“1

b
ÿ

s“1

As,j

pα ` jqs
, (A.7)

where As,j “ ρ
pb´sq

j p´jq{pb ´ sq! and ρ
pdq

j pαq is the dth derivative of the function

ρjpαq “ αa´b´1{tpα ` 1qj´1pα ` j ` 1qm´j´1u
b.

Proof. From the definition of ascending factorial, we can write

αa´1

tpαqmub
“

αa´b´1

śm´1
i“1 pα ` iqb

,

which is ratio of polynomials whose roots for the denominators are ´1, . . . ,´m` 1.

Following the algorithm of Section 2.102, page 66 in Gradshteyn and Ryzhik (2007),
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we can rewrite the above as the sum of partial fractions in equation (A.7), where the

coefficients As,j of the expansion depend on the derivatives of the function

ρjpαq “
αa´b´1

śm´1
i“1 pα ` iqb

pα ` jqb, pj “ 1, . . . ,m ´ 1q,

evaluated at the solution α “ ´j. In particular, we have As,j “ ρ
pb´sq

j p´jq{pb ´ sq!

We calculate their exact values below, after noticing that

ρjpαq “
αa´b´1

śj´1
i“1 pα ` iqb

śm´1
i“j`1pα ` iqb

“
αa´b´1

tpα ` 1qj´1pα ` j ` 1qm´j´1u
b
. (A.8)

Lemma 37. The normalizing constant of the Stirling-gamma α „ Sgpa, b,mq where

a, b P N can be expressed as

Sa,b,m “

m´1
ÿ

j“1

b
ÿ

s“1

As,jϕspjq, ϕspjq “

#

´ log j, s “ 1,

j1´s{ps ´ 1q s “ 2, 3, . . .

where As,j are defined in Lemma 36.

Proof. Recall that
ş

R`
1{pα ` jqsdα “ 1{tps ´ 1qjs´1u for s ą 1, while

ż

R`

1

α ` j
dα “ lim

αÑ8
logpα ` jq ´ log j.

Define the functions

ϕ1pjq “ ´ log j, ϕspjq “
1

ps ´ 1qjs´1
, s “ 2, 3, . . .

From Lemma 36, we have

Sa,b,m “

ż

R`

αa´1

tpαqmub
dα “

ż

R`

m´1
ÿ

j“1

b
ÿ

s“1

As,j

pα ` jqs
dα “

m´1
ÿ

j“1

b
ÿ

s“1

As,jϕspjq
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The last equality holds because
řm´1

j“1 A1,j “ 0, which makes the limit of the

sum of logarithms necessarily equal to zero. This can be shown by contradiction. If

řm´1
j“1 A1,j ‰ 0, then necessarily

ˇ

ˇ

ˇ

řm´1
j“1 A1,j limαÑ8 log pα ` jq

ˇ

ˇ

ˇ
“ 8, which implies

that |Sa,b,m| “ 8. However, this contradicts Proposition 32, which states that 0 ă

Sa,b,m ă 8 for appropriate choices of a, b and m. Hence, the divergence of each

logarithmic term is compensated by the alternating sum. For an alternative proof of

why this happens, refer to Zhu and Luo (2021) and references therein.

Proof of Theorem 12. Lemma 36 and Lemma 37 show that we can write the nor-

malizing constant as a sum of logarithms. It remains to calculate the values for the

coefficients As,j “ ρ
pb´sq

j p´jq{pb ´ sq! We start by rewriting equation (A.8) as

ρjpαq “ exp rpa ´ b ´ 1q logα ´ b tlogpα ` 1qj´1 ` logpα ` j ` 1qm´j´1us .

Recalling that d
dx

logpxqn “ ψpx ` nq ´ ψpxq and that ψpx ` 1q “ ψpxq ` 1{x, we

have that

ρ1
jpαq “ ρjpαqhjpαq, hjpαq “

a ´ 1

α
´ btψpα ` mq ´ ψpαq ´ ψpα ` j ` 1q ` ψpα ` jqu.

Then, the sth derivative of ρjpαq can be expressed via Faà di Bruno’s formula as

ρ
psq

j pαq “ ρjpαqBsthjpαq, h1
jpαq, . . . , h

ps´1q

j pαqu, (A.9)

where

h
pdq

j pαq “ p´1q
dd!

a ´ 1

αd`1
´btψpdq

pα`mq´ψpdq
pαq´ψpdq

pα`j`1q`ψpdq
pα`jqu (A.10)

for d “ 0, . . . , s ´ 1, and

Bspx1, . . . , xsq “
ÿ

pj1,...,jsqPIs

s!

j1!j2! ¨ ¨ ¨ js!

´x1
1!

¯j1 ´x2
2!

¯j2
¨ ¨ ¨

´xs
s!

¯js
(A.11)
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is the complete exponential Bell polynomial of order s and Is is the set of all nonneg-

ative integers pj1, . . . , jsq that satisfy j1 ` 2j2 ` . . .` sjs “ s. It remains to evaluate

the function ρ
psq

j pαq when α “ ´j. We start by noticing that

j´1
ź

i“1

p´j ` iqb “ tp1 ´ jqp2 ´ jq ¨ ¨ ¨ p´2qp´1qu
b

“ p´1q
bjΓpjqb,

m´1
ź

i“j`1

p´j ` iqb “ t1 ¨ 2 ¨ 3 ¨ ¨ ¨ pm ´ j ´ 1qu
b

“ Γpm ´ jqb.

Plugging in the above in equation (A.8), we have

ρjp´jq “
p´jqa´b´1

śj´1
i“1 p´j ` iqb

śm´1
i“j`1p´j ` iqb

“
p´1qa´bpj`1q´1ja´b´1

ΓpjqbΓpm ´ jqb
. (A.12)

Moreover, we have that the derivatives in equation (A.10) can be rewritten as

h
pdq

j pαq “ p´1q
dd!

«

a ´ 1

αd`1
´ b

#

j´1
ÿ

i“0

1

pα ` iqd`1
`

m´1
ÿ

i“j`1

1

pα ` iqd`1

+ff

. (A.13)

Calling hj,d “ h
pdq

j p´jq, we then have that

hj,d`1

d!
“ ´

pa ´ 1q

jd`1
´ bpHm´j´1,d`1 ´ Hj,d`1q, (A.14)

with Hj,s “
řj

i“1 1{is the jth generalized harmonic number of order s. Plugging

equations (A.12) and (A.14) into (A.9) and recalling that As,j “ ρ
pb´sq

j p´jq{pb´ sq!,

we write the partial fraction decomposition coefficients as

As,j “
1

pb ´ sq!

p´1qa´bpj`1q´1ja´b´1

tΓpjqΓpm ´ jqub
Bb´sphj,1, hj,2, . . . , hj,b´sq.

Combining this expression with Lemma 37 yields the final form

Sa,b,m “

m´1
ÿ

j“1

b
ÿ

s“1

As,jϕspjq

“

m´1
ÿ

j“1

b
ÿ

s“1

p´1qa´bpj`1q´1ja´b´1

tΓpjqΓpm ´ jqub

Bb´sphj,1, hj,2, . . . , hj,b´sq

pb ´ sq!
ϕspjq.
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Rearranging the terms and collecting the Bell polynomials into the quantity

Sb,jpx1, . . . , xbq “

b
ÿ

s“1

Bb´spx1, . . . , xb´sq

pb ´ sq!
ϕspjq,

yields the desired result.

A.4.2 Proof of Corollary 13

Proof. Setting b “ 1 in the above statement proves the statement. To see why, recall

that As,j “ ρ
pb´sq

j p´jq{pb´sq! Since b “ 1, we only have A1,j “ ρjp´jq, whose general

formula is provided in equation (A.12).

A.4.3 Proof of Theorem 14

The proof of Theorem 14 follows the same reasoning as the one of Theorem A1. We

discuss the highlights with the help of the following statements.

Lemma 38. Let a, b,m, n, k P N with 1 ă a{b ă m, and 1 ě k ě n, and call

M “ mintn,mu and ℓ “ |n ´ m|. Then, we can write

αa`k´1

tpαqmubpαqn
“

M´1
ÿ

j“1

b`1
ÿ

s“1

Ts,j
pα ` jqs

`

ℓ´1
ÿ

i“0

Ui

α ` M ` i
, (A.15)

where Ts,j “ τ
pb`1´sq

j p´jq{pb` 1´ sq! and τ
pdq

j pαq is the dth derivative of the function

τjpαq “
αa`k´b´2

tpα ` 1qj´1pα ` j ` 1qM´j´1u
b`1pα ` Mqℓ

, (A.16)

Ui “ uip´M ´ iq and

uipαq “
αa`k´b´2

śM´1
j“1 pα ` jqb`1

śi´1
t“0pα ` M ` tq

śℓ´1
v“i`1pα ` M ` vq

(A.17)
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Proof. The proof follows from the same reasoning discussed in Lemma 36, which is

a direct consequence of the algorithm of Section 2.102, page 66 in Gradshteyn and

Ryzhik (2007), after writing that

αa`k´1

tpαqmubpαqn
“

αa`k´1

tpαqMub`1pα ` Mqℓ
“

αa´b`k´2

śM´1
j“1 pα ` jqb`1

śℓ´1
i“0pα ` M ` iq

. (A.18)

The quantities τjpαq and ujpαq are obtained by multiplying equation (A.18) by pα`

jqb`1 and pα ` M ` iq, respectively, and simplifying appropriately.

Lemma 39. The coefficients Va,b,mpn, kq when a, b P N are expressed as follows:

Va,b,mpn, kq “

M´1
ÿ

j“1

b`1
ÿ

s“1

Ts,jϕspjq ´

ℓ´1
ÿ

i“0

Ui log pM ` iq,

where Ts,j and Ui are defined in Lemma 38 and the coefficients ϕspjq are defined in

Lemma 37.

Proof. Follow the same line of reasoning as the proof of Lemma 37, since we have

rational functions as integrands. In particular, we point out that the coefficients

multiplying the logarithms are such that
řM´1

j“1 T1,j `
řℓ´1

i“0 Ui “ 0. Again, this must

happen because the diverging logarithms resulting from the integration must cancel

each other out because Va,b,mpn, kq ă 8 by definition.

We are now ready to provide proof of the final statement.

Proof of Theorem 14. First of all, we provide a simpler expression for Ui. This is

equal to uip´M ´ iq in equation (A.17). In particular, the quantities at the denom-
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inator simplify as

M´1
ź

j“1

p´M ´ i ` jqb`1
“ tṕ M´ i` 1qṕ M´ i` 2q ¨ ¨ ¨ ṕ i´ 1qu

b`1
“ tpi ` 1qM´1u

b`1

i´1
ź

t“0

p´M ´ i ` tq “ p´iqp´i ` 1q ¨ ¨ ¨ p´2qp´1q “ p´1q
iΓpi ` 1q

ℓ´1
ź

v“i`1

p´M ´ i ` vq “ p1qp2q ¨ ¨ ¨ pℓ ´ 1 ` iq “ Γpℓ ´ iq.

This implies that

Ui “ p´1q
a´b`k´2`i pM ` iqa´b`k´2

tpi ` 1qM´1ub`1Γpi ` 1qΓpℓ ´ iq
,

which is the generic coefficient in the second sum of logarithms. As for Ts,j, we rely

on a similar argument as the proof of Theorem A1, which depends on Faà di Bruno’s

formula. Rewriting τjpαq as

τjpαq “ exptlog τjpαqu

“ exprpa ` k ´ b ´ 2q logα ´ pb ` 1qtlogpα ` 1qj´1 ` log pα ` j ` 1qM´j´1u

´ log pα ` Mqℓs,

we have that τ 1
jpαq “ τjpαqgjpαq with

gjpαq “
a ` k ´ 1

α
´ pb ` 1qtψpα ` jq ´ ψpαq ` ψpα ` Mq ´ ψpα ` j ` 1qu

´ ψpα ` M ` ℓq ` ψpα ` Mq

whose dth derivative is equal to

g
pdq

j pαq “ p´1q
dd!

a ` k ´ 1

αd`1
´ pb ` 1qtψpdq

pα ` jq ´ ψpdq
pαq ` ψpdq

pα ` Mq

´ ψpdq
pα ` j ` 1qu ´ ψpdq

pα ` M ` ℓq ` ψpdq
pα ` Mq

“ p´1q
dd!

«

a`k´1

αd`1
´pb`1q

#

j´1
ÿ

i“0

1

pα`iqd`1
`

M´1
ÿ

i“j`1

1

pα`iqd`1

+

`

ℓ´1
ÿ

i“0

1

α`M`i

ff

.
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Using Faà di Bruno’s formula and recalling the complete exponential Bell polynomial

in equation (A.11), we obtain that

τ
pdq

j pαq “ τjpαqBd

´

gjpαq, g1
jpαq, . . . , g

pd´1q

j pαq

¯

. (A.19)

We are finally ready to calculate Ts,j “ τ
pb`1´sq

j p´jq{pb ` 1 ´ sq!. Calling gj,d`1 “

g
pdq

j p´jq, we can write that

gj,d`1

d!
“ ´

a ` k ´ 1

jd`1
` bHM´j´1,d`1 ´ pb ` 1qHj,d`1 ` HM´j`ℓ´1,d`1, (A.20)

since
řℓ´1

i“0 1{pM ` i ´ jqd`1 “ HM´j`ℓ´1,d`1 ´ HM´j´1,d`1, and Hj,s “
řj

i“1 1{is is

again the jth generalized harmonic number of order s. With similar calculations as

the one for equation (A.12), we also have that

τjp´jq “
p´jqa´b`k´2

t
śj´1

i“1 p´j ` iq
śm´1

i“j`1p´j ` iqub`1pM ´ jqℓ

“ p´1q
a´b`k´2`bpj`1q ja´b`k´2

tΓpjqΓpm ´ jqub`1pM ´ jqℓ
.

(A.21)

Plugging equations (A.21), (A.20) and (A.19) into the formula for Ts,j yiels

Ts,j “
p´1qa´b`k´2`bpj`1qja´b`k´2

tΓpjqΓpm ´ jqub`1pM ´ jqℓ

Bb`1´spgj,1, gj,2, . . . , gj,b`1´sq

pb ` 1 ´ sq!
.

The rest of the proof follows by regrouping the coefficients in a similar manner as

the one in the proof for Theorem 12.

A.5 Random sample generation for the Stirling-gamma distribution

In this Section, we illustrate a strategy to draw random samples from the Stirling-

gamma distribution. Unfortunately, a rejection sampler using a gamma Gapa ´

b, b logmq as the proposal is not feasible because the Stirling-gamma has heavier
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tails; see Corollary 35 above. As such, an ideal proposal must be itself a heavy-tailed

distribution from which sampling is relatively easy. Another valid alternative is to

use rejection sampling via the ratio of uniforms method, which can be adapted to any

distribution for which the density fpxq and the function x2fpxq can be maximized;

see (Devroye, 1986a) for details. Unfortunately, the density of the Stirling-gamma is

not always bounded. To see this, let

Gpαq “
αa´1

tpαqmub
“

αa´b´1

śm´1
i“1 pα ` iqb

(A.22)

with α ě 0 denote the unnormalized density function of the Stirling-gamma. Then,

as α Ñ 0, we have that

lim
αÑ0

Gpαq “

$

’

&

’

%

8, if a ´ b ă 1,

Γpmqb, if a ´ b “ 1,

0, if a ´ b ą 1,

which means that Gpαq admits a maximum if and only if a ´ b ě 1. Due to such

behavior, we must consider two different sampling strategies depending on the value

of a´ b, one where a´ b ě 1, and another where a´ b ă 1. In the first case, we rely

on the ratio of uniforms method, which we illustrate in Algorithm 1 below.

Algorithm 1: Rejection sampler for the Stirling-gamma distribution when
a ´ b ě 1

1 Let Mu “ maxαě0Gpαq and Mv “ maxαě0 α
2Spαq, with Gpαq as in (A.22);

2 Sample u uniformly in r0,M
1{2
u s;

3 Sample v uniformly in r0,M
1{2
v s;

4 If 2 log u ď logGpv{uq, set α “ v{u. Otherwise, return to 2;
5 Output: a sample from α „ Sgpa, b,mq.

The above strategy yields valid samples from the Stirling-gamma distribution as

long as a ´ b ě 1. When a ´ b ă 1, we instead rely on a rejection sampler with a
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generalized beta prime distribution α „ BePpa0, b0, rq as proposal, whose density is

pBePpαq “
pα{rqa0´1p1 ` α{rq´a0´b0

rBpa0, b0q

with α ą 0 and Bpa0, b0q “ Γpa0qΓpb0q{Γpa0 ` b0q denoting the Beta function. Sam-

pling from α „ BePpa0, b0, rq can be performed by letting α “ rx{p1 ´ xq with

x „ Bepa0, b0q. Thus, our goal is to find appropriate choices for a0, b0, and r such

that the generalized beta prime (i) has an asymptote as α Ñ 8, (ii) is heavy-tailed

and (iii) “covers” the Stirling-gamma density, that is pSgpαq{pBePpαq ď M ă 8, with

a sufficiently small M . All these can be obtained by finding an appropriate bound

for Gpαq in equation (A.22), as we now show. Let rpαq be the function of α ě 0

defined as

rpαq “

#

m´1
ź

i“1

pα ` iq

+1{pm´1q

´ α.

It is easy to see that rpαq is a monotonically increasing function of α whose minimum

value is r “ rp0q “ Γpmq1{pm´1q. Since pα ` rpαqqm´1 “
śm´1

i“1 pα ` iq, then

pα ` rqm´1
ď

m´1
ź

i“1

pα ` iq, r “ Γpmq
1{pm´1q, (A.23)

for every α ą 0. But then, we can bound the unnormalized density function in

equation (A.22) as follows

Gpαq “
αa´b´1

śm´1
i“1 pα ` iqb

ď
αa´b´1

pα ` rqbpm´1q
“ ra´mb´1 pα{rqa´b´1

p1 ` α{rqbpm´1q
“ ra´mb´1Qpαq.

The Qpαq defined on the right-hand side of the above inequality is the kernel of a

generalized beta prime distribution α „ BePpa´ b,mb´ a, rq, with r “ Γpmq1{pm´1q.
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Under such a proposal, we have

pSgpαq

pBePpαq
“
rβpa ´ b,mb ´ aq

Sa,b,m

αa´b´1

śm´1
i“1 pα ` iqb

p1 ` α{rqbpm´1q

pα{rqa´b´1

“
pα ` rqbpm´1q

pα ` 1qbm´1

Bpa ´ b,mb ´ aq

rmb´aSa,b,m

ď
Bpa ´ b,mb ´ aq

rmb´aSa,b,m

“ M ă 8,

where the inequality follows from equation (A.23) after writing
śm´1

i“1 pα ` iq “

pα` 1qm´1. This makes the acceptance function in an accept-reject algorithm equal

to

Apαq “
pSgpαq

MpBePpαq
“

pα ` rqbpm´1q

pα ` 1qbm´1

, r “ Γpmq
1{pm´1q. (A.24)

The resulting sampling procedure is detailed in Algorithm 2 below.

Algorithm 2: Rejection sampler for the Stirling-gamma distribution when
a ´ b ă 1

1 Let r “ Γpmq1{pm´1q and Apαq be as in equation (A.24);
2 Sample x „ Bepa ´ b,mb ´ aq and set y “ rx{p1 ´ xq;
3 Sample u uniformly in r0, 1s;
4 If log u ď logApyq, set α “ y. Otherwise, return to 2;
5 Output: a sample from α „ Sgpa, b,mq.

To ease reproducibility, we implement both Algorithm 1 and Algorithm 2 in the

R package ConjugateDP via the function rSg. Table A.1 and Table A.2 report the

acceptance rates for the samplers above for selected values of a, b, andm. We see that

the acceptance rates for Algorithm 1 range between 0.3 and 0.7, which is fairly large

considering that the ratio of uniforms is a method that is not tailored specifically

to the Stirling-gamma. As for Algorithm 2, we see that the rates are much larger

and range between 0.4 and 0.95. Indeed, this is due to the high similarity between

the generalized beta prime distribution and the Stirling-gamma when a ´ b ă 1.
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In principle, one could use Algorithm 2 to draw samples from α „ Sgpa, b,mq for

any choice of a and b, since the acceptance function in equation (A.24) is always

a valid one. However, we noticed that when a ´ b ě 1, the acceptance probability

1{M “ rmb´aSa,b,m{Bpa ´ b,mb ´ aq with the generalized beta prime proposal is

particularly low. Therefore, we still rely on the ratio of uniforms for the general case

when a ´ b ě 1.

Table A.1: Acceptance probabilities for Algorithm 1 under varying a, b and m, when
a ´ b ě 1. Values are obtained by averaging the acceptance rate obtained in 1000
trials of Algorithm 1 under 100 replicates. Standard deviations were all around 0.01
and therefore are omitted from the table. Empty cells indicate when 1 ă a{b ă m
and a ´ b ě 1 are violated.

m “ 100 m “ 1000
a “ 2 a “ 3 a “ 10 a “ 15 a “ 2 a “ 3 a “ 10 a “ 15

b “ 0.2 0.756 0.701 0.544 0.594 0.742 0.668 0.425 0.358
b “ 1 0.679 0.724 0.445 0.377 0.680 0.717 0.419 0.346
b “ 1.5 0.754 0.446 0.372 0.752 0.427 0.349
b “ 5 0.528 0.394 0.523 0.386

Table A.2: Acceptance probabilities for Algorithm 2 under varying a, b and m, when
a ´ b ă 1. Values are obtained by averaging the acceptance rate obtained in 1000
trials of Algorithm 2 under 100 replicates. Standard deviations were all around 0.01
and therefore are omitted from the table.

m “ 100 m “ 1000
a “ 0.2 a “ 0.6 a “ 0.7 a “ 1 a “ 0.2 a “ 0.6 a “ 0.7 a “ 1

b “ 0.1 0.949 0.788 0.760 0.678 0.911 0.638 0.593 0.458
b “ 0.2 0.799 0.757 0.655 0.683 0.622 0.476
b “ 0.5 0.940 0.883 0.733 0.907 0.822 0.609
b “ 0.6 0.938 0.775 0.905 0.670

A.6 Simulation study

In this Section, we present a simulation study within the same population of parti-

tion framework introduced in Section 3 of the main paper. In particular, our goal
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is to show how the conjugate Stirling-gamma prior can lead to borrowing of infor-

mation when inferring the latent partition across multiple networks, thus reducing

uncertainty. Consider the same stochastic block model setting of Section 4, namely

PpYi,j,s “ 1 | Zi,s “ h, Zj,s “ h1, νq “ νh,h1,s, νh,h1,s „ Bep1, 1q, (A.25)

where Yi,j,s is a binary random variable indicating an edge between nodes i and j in

networks s “ 1, . . . N . The variables Zi,s denote cluster assignment, with Zi,s “ h

if and only if i P Ch,s in network s, and νh,h1,s denotes the edge probabilities in the

block identified by clusters Ch,s and Ch1,s. We model the latent partition in each

network independently as follows:

PpΠn,s “ tC1,s, . . . , Cks,su | αsq “
αks
s

pαsqn

ks
ź

j“1

pnj,s ´ 1q! ps “ 1, . . . , Nq,

where αs is the precision parameter specific to partition αs.

Within this framework, we are interested in investigating the impact of differ-

ent choices of precision parameters α1, . . . , αN on the inferred latent partition. We

consider three priors: αs is fixed and equal across networks, αs is random with

αs „ Sgpa, b, nq separately for each network, and the precision is pooled across net-

works, namely α1 “ . . . “ αN “ α „ Sgpa, b, nq. In the third case, the shared α

induces borrowing of information since the number of clusters ks in every network

contributes to the posterior distribution in Theorem 4.

We simulate N “ 6 networks of n “ 100 nodes from the stochastic block model in

equation (A.25). The true partition is generated by randomly dividing the nodes be-

tween six clusters with assignment probabilities drawn from a Dirichlet distribution

Dirp10, 10, 10, 10, 10, 10q. Binary edges are independently simulated with probabili-

ties pνh,h,1, . . . , νh,h,Nq “ p0.95, 0.90, 0.85, 0.80, 0.75, 0.70q for nodes within the same

cluster, and pνh,h1,1, . . . , νh,h,Nq “ p0.05, 0.10, 0.10, 0.15, 0.15, 0.30q for any h ‰ h1.
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Network 1 Network 2 Network 3

Network 4 Network 5 Network 6

Figure A.1: Simulated networks of size n “ 100 nodes. Columns and rows represent
nodes of each network, and black dots indicate the edges. Nodes are sorted according
to the true cluster assignment, highlighted by the different colors on the left of each
plot.

This allows each network to have a different block structure with decreasing signal-

to-noise ratios. As such, we expect to infer the true communities in Networks 5 and

6 with a higher uncertainty than in Networks 1 and 2. Figure A.1 displays the six

generated datasets. Black points indicate an edge between each pair of nodes. Rows

and columns have been sorted according to the true cluster assignment for better

visualization. We set αs “ 7.5 in the fixed case and a “ 6 and b “ 0.3 in random and

pooled cases, so that EpKnq “ 20 in all priors. Inference is performed by running a

collapsed Gibbs sampler as in Legramanti et al. (2022) for 10,000 iterations, treating

the first 2,000 as burn-in. The full conditional for αs in the random case and for α in

the pooled case are reported in Proposition 4 and Theorem 4 in the main manuscript,

respectively.
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Figure A.2: Posterior distribution of the number of clusters Kn detected in each
simulated network in the three cases: αs “ 7.5 (light blue), αs „ Sgp6, 0.3, 100q

independently in each network (red), and αs “ α „ Sgp6, 0.3, 100q (blue). The
dotted vertical line highlights the true number of communities.

Figure A.2 displays the posterior distribution of the number of detected clusters

Kn in each dataset for the three choices of precision parameter. Except for Network

6, the posterior mode of Kn coincides with the truth in each model. However, the

pooled case shows lower uncertainty than the random one, thanks to the borrowing

of information granted by the common α. In the fixed cases, instead, Kn explodes

as the signal-to-noise ratio decreases. This is particularly evident in Network 6,

which confirms the lack of robustness of Dirichlet process mixtures with fixed α.

To further highlight these differences, we calculate the average adjusted Rand index

for the posterior partition retrieved by the three models with respect to the truth.

This equals 0.943 for the pooled case, 0.940 for the random, and 0.929 for the fixed,

indicating that pooling α yields a better estimate across networks.
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Appendix B

Supplementary material for Chapter 3 - Bayesian
modeling of sequential discoveries

This Appendix contains the proofs for the statements in Chapter B, and additional

results and simulations. It is organized as follows. Section B.1 contains the proofs of

the statements in the main paper. Section B.2 and B.3 show how to perform posterior

inference on the single-site accumulation curve and in the covariate-dependent exten-

sion, respectively. Section B.4 presents details of each model and shows additional

simulation results. Section B.5 extends the discussion on the Copepod dataset. Fi-

nally, Section B.6 describes the singletons imputation strategy for the finnish fungal

biodiversity study.

B.1 Proofs

Proof of Theorem 16. We first discuss the likelihood L pα | X1, . . . , Xnq. Given

the sequence of tags X1, . . . , Xn, any exchangeable prediction scheme defines a ran-

dom partition Πn of the integers t1, . . . , nu such that i and j belong to the same

set in Πn if and only if Xi “ Xj. Let tC1, . . . , Cku be a partition of n into k
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groups, with nj “ cardpCjq, pj “ 1, . . . , kq being the cardinality of Cj. The re-

sulting law of the random partition Πn in the Dirichlet process case equals PpΠn “

tC1, . . . , Ckuq “ αk{pαqn
śk

j“1pnj ´ 1q!. This is the likelihood function for α, so that

L pα | X1, . . . , Xnq 9 αk{pαqn, which only depends on Kn “ k and not on n1, . . . , nk.

By letting pαqn “ α
śn

i“2pα ` i ´ 1q, we get

logL pα | X1, . . . , Xnq “ pk ´ 1q logα ´

n
ÿ

i“2

logpα ` i ´ 1q ` cX , (B.1)

where cX is a constant not depending on α. On the other hand, the logarithm of the

likelihood induced by the discovery indicators is equal to

logL pα | D1, . . . , Dnq “ logα
n
ÿ

i“2

Di ´

n
ÿ

i“2

logpα ` i ´ 1q ` cD, (B.2)

with cD being a constant not depending on α. Since
řn

i“2Di “ k ´ 1, one has that

equation (B.1) and (B.2) are equal up to an additive constant. Thus, the result

follows.

Proof of Proposition 18. Recall that Kn “
řn

i“1Di is non-decreasing in n. Taking

the limit as n Ñ 8, we have that Kn Ñ K8 “
ř8

i“1Di almost surely. Then,

EpK8q “
ř8

i“1 Spi ´ 1;θq, as a consequence of the monotone convergence theorem.

Moreover, equation (3.6) follows from the remainder estimate for the integral test

for convergence of an infinite series. In particular, being Spt;θq positive, continuous

and strictly decreasing in t, we have that

ż 8

2

Spt ´ 1;θqdt ď

8
ÿ

i“2

Spi ´ 1;θq ď

ż 8

1

Spt ´ 1;θqdt.

Recalling that
ř8

i“2 Spi ´ 1;θq “ EpK8q ´ Sp0;θq “ EpK8q ´ 1 and that EpT q “

ş8

0
Spt;θqdt “

ş8

1
Spt ´ 1;θqdt, we have that

EpT q ´

ż 1

0

Spt;θqdt ` 1 ď EpK8q ď EpT q ` 1.
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Finally, as
ş1

0
Spt;θqdt ď

ş1

0
Sp0;θqdt “ 1, the result follows.

Proof of Corollary 19. We begin by proving that K8 “ 8 if and only if EpK8q “

8. One side follows from the monotone convergence theorem: if K8 “ 8, then

necessarily limnÑ8EpKnq “ EpK8q “ 8 by the same argument in the proof of

Proposition 18. The other direction can be proved by contrapposition: suppose that

K8 ă 8. Then, there exists a positive constant M ă 8 such that K8 ă M almost

surely. This means that EpK8q ă EpMq “ M ă 8. The rest of the claim naturally

follows from the inequality in equation (3.6) of Proposition 18.

Proof of Theorem 20. The first part of the theorem is a consequence of the strong

law of large numbers for the sum of independent random variables. In particular, let

sn “
şn

1
Spt ´ 1;θqdt. Then, sn ă sn`1 for every n, and sn Ñ EpT q “ 8 as n Ñ 8.

Since by assumption Spn ´ 1;θq ą Spn;θq and s2n ă s2n`1 for every n, we have that
ř8

n“1 varpDnq{s2n ă 8, which holds by the series convergence test, because

lim
nÑ8

varpDn`1q

s2n`1

s2n
varpDnq

“ lim
nÑ8

Spn;θqt1 ´ Spn;θqu

Spn ´ 1;θqt1 ´ Spn ´ 1;θqu

s2n
s2n`1

ă lim
nÑ8

1 ´ Spn;θq

1 ´ Spn ´ 1;θq
“ 1.

Hence, the above condition ensures that tKn ´ EpKnqu{sn Ñ 0 almost surely as

n Ñ 8 by the strong law of large numbers. This means that limnÑ8 Kn{sn “

limnÑ8EpKnq{sn “ 1, almost surely, as a consequence of Proposition 18.

The second part of the claim follows from Lyapunov’s central limit theorem.

Define σ2
n “ varpKnq for every n. As the discovery indicators pDnqně1 are all inde-

pendent, we can prove the central limit theorem for Kn by showing that there exists

a δ ą 0 such that

lim
nÑ8

1{σ2`δ
n

n
ÿ

i“1

Ep|Di ´ πi|
2`δ

q “ 0,

where πn “ Spn´ 1;θq is the discovery probability at every n. Fix δ “ 2. From the
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proofs of Corollaries 19 and 21, we have that K8 “ 8 implies that limnÑ8 σ
2
n “ 8.

Moreover, by looking at the fourth centered moment of a Bernoulli distribution we

have that

n
ÿ

i“1

Ep|Di ´ πi|
4
q “

n
ÿ

i“1

πip1 ´ πiqt1 ´ 3πip1 ´ πiqu ď

n
ÿ

i“1

πip1 ´ πiq “ σ2
n,

which leads to 0 ď limnÑ8 1{σ4
n

řn
i“1Ep|Di ´ πi|

4q ď limnÑ8 1{σ2
n “ 0, concluding

the proof.

Proof of Corollary 21. To prove this claim, we rely on the limit comparison test

for the ratio of two series. In particular,

lim
nÑ8

Spn ´ 1;θqt1 ´ Spn ´ 1;θqu

Spn ´ 1;θq
“ 1 ´ lim

nÑ8
Spn ´ 1;θq “ 1.

This implies that varpK8q “
ř8

i“1 Spi ´ 1;θqt1 ´ Spi ´ 1;θqu diverges if and only

if EpK8q “
ř8

i“1 Spi ´ 1;θq diverges. Following the same argument in the proof of

Corollary 19, having K8 ă 8 almost surely implies that EpK8q ă 8, and in turn

varpK8q ă 8.

Proof of Proposition 22 This can be proved by means of the series convergence

test. By the fact that

lim
nÑ8

Spn;α, σ, ϕq

Spn ´ 1;α, σ, ϕq
“ lim

nÑ8

αϕn

αϕn ` n1´σ

αϕn´1 ` pn ´ 1q1´σ

αϕn´1
“ ϕ,

having ϕ ă 1 implies that EpK8q “
ř8

i“1 Spi ´ 1;α, σ, ϕq ă 8 almost surely. But

then, K8 ă 8 as well by the proof of Corollary 19.

Proof of Theorems 24 and 25 The proofs of Theorems 24 and 25 are presented

together. The arguments we use follow a similar line of reasoning as in Charalambides

(2005). As a first step, we prove the triangular recurrence in Theorem 24. Following

Definition 23, we can write
śn

k“0pα`k1´σϕ´kq “ pα`n1´σϕ´nq
śn´1

k“0pα`k1´σϕ´kq,
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for any n ě 1, from which it follows that

n`1
ÿ

k“0

αkCn`1,kpσ, ϕq “

n`1
ÿ

k“1

αkCn,k´1pσ, ϕq `

n
ÿ

k“0

αkn1´σϕ´nCn,kpσ, ϕq.

Hence, all the coefficients associated to each αk must coincide under both sides of

the above equation. This means that Cn`1,kpσ, ϕq “ Cn,k´1pσ, ϕq`n1´σϕ´nCn,kpσ, ϕq.

As for the initial conditions, it is easy to check that they naturally follow from

Definition 23.

To prove the second part of Theorem 24, we start by considering PpKn “ kq.

Call j1, . . . , jn a sequence of indexes such that Djs “ 1 for s “ 1, . . . , k, and Djs “ 0

for s “ k ` 1, . . . , n. By independence of the indicators, the probability of such a

configuration is

PpDj1 “ 0, . . . , Djk “ 1, Djk`1
“ 0, . . . , Djn “ 0q “

“

k
ź

s“1

Spjs ´ 1;α, σ, ϕq

n
ź

s“k`1

t1 ´ Spjs ´ 1;α, σ, ϕqu

“
αk

śn´1
i“0 pα ` i1´σϕ´iq

n´k
ź

j“1

i1´σ
j ϕ´ij ,

where the product in the last equality follows from relabeling the indexes as i1 “

jk`1 ´ 1, . . . , in´k “ jn ´ 1. Moreover, note that ti1, . . . , in´ku is one of the n ´ k

possible combinations of the n´1 positive integers t1, . . . , n´1u for which we obtain

precisely k discoveries, with 1 ď k ď n and n ě 2. Hence, summing over all the

possible combinations of ti1, . . . , in´ku leads us to the probability

PpKn “ kq “
αk

śn´1
i“0 pα ` i1´σϕ´iq

ÿ

pi1,...,in´kq

n´k
ź

j“1

i1´σ
j ϕ´ij , (B.3)

for 1 ď k ď n and n ě 2. The object in equation (B.3) is a probability mass function.
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This means that

n
ÿ

k“0

PpKn “ kq “

n
ÿ

k“0

αk

śn´1
i“0 pα ` i1´σϕ´iq

ÿ

pi1,...,in´kq

n´k
ź

j“1

i1´σ
j ϕ´ij “ 1,

recalling that PpKn “ 0q “ 0. Rearranging the equality, one has that

n´1
ź

i“0

pα ` i1´σϕ´i
q “

n
ÿ

k“0

αk
ÿ

pi1,...,in´kq

n´k
ź

j“1

i1´σ
j ϕ´ij ,

which is the same polynomial expansion proposed in Definition 23. Hence, it must

be that

Cn,kpσ, ϕq “
ÿ

pi1,...,in´kq

n´k
ź

j“1

i1´σ
j ϕ´ij , (B.4)

again for 1 ď k ď n and n ě 2. This last equality proves the second part of

Theorem 24. Finally, Theorem 25 naturally follows by plugging equation (B.4) into

(B.3).

Proof of Proposition 26 To find the maximizer θ̂ “ pα̂, σ̂, ϕ̂q of the likelihood in

equation (3.5) with the the three-parameter log-logistic specification we rely on the

first order condition with respect to α. In particular, the logarithm of the likelihood

becomes

logL pα, σ, ϕ | D1, . . . Dnq “ logα
n
ÿ

i“2

Di ´

n
ÿ

i“2

logtαϕi´1
` pi ´ 1q

1´σ
u ` cσ,ϕ,

where cσ,ϕ is a constant not dependent on α. Hence, the first order condition with

respect to α leads to

n
ÿ

i“1

αϕi´1

αϕi´1 ` pi ´ 1q1´σ
“

n
ÿ

i“1

Di “ k “ EpKnq.

This equality must be maintained at the solution θ̂.
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B.2 Posterior inference for a single accumulation curve

In the following we describe the estimation of the parameters θ “ pα, σ, ϕq under the

three-parameter log-logistic specification and using Markov Chain Monte Carlo. Let

pDnqně1 be a sequence of discovery indicators with D1 “ 1 and

πn`1 “ PpDn`1 “ 1 | D1, . . . , Dnq “
αϕn

αϕn ` n1´σ
, n ě 1,

for α ą 0, σ ă 1, 0 ă ϕ ď 1 and π1 “ 1. As discussed in the manuscript, this implies

that

log
πn`1

1 ´ πn`1

“ logα ´ p1 ´ σq log n ` plog ϕqn “ β0 ` β1 log n ` β2n, n ě 1,

with β0 “ logα, β1 “ σ ´ 1 ă 0 and β3 “ log ϕ ď 0. These constraints are imposed

through a truncated normal prior, namely β „ N3pµ,Σq1pβ1 ă 0; β2 ď 0q.

Samples from the posterior can be easily obtained via the Pólya-gamma data-

augmentation strategy introduced in Polson et al. (2013). This procedure introduces

Pólya-gamma distributed positive latent variables ω “ pω2, . . . , ωnqT. The resulting

full conditional distributions for β and ω are available in closed form. Let d “

pd2, . . . , dnqT be the observed values for the discovery indicators D2, . . . , Dn and let

V be the design matrix, with n´1 rows and 3 columns and entries vi “ p1, log i, iqT,

for i “ 1, . . . , n ´ 1. Then, the full conditional for pβ | ω,dq is a multivariate

truncated normal distribution with parameters µω and Σω equal to

Σω “ pVTΩV ` Σ´1µq
´1, µω “ ΣωpVTκ ` Σ´1µq, (B.5)

with κ “ pd2 ´ 1{2, . . . , dn ´ 1{2qT and Ω “ diagpω2, . . . , ωnq. The algorithm below

outlines the sampling procedure.

In our work we obtain samples from the multivariate truncated normal through

the efficient algorithm proposed in Botev (2017).
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Algorithm 3: Pólya-Gamma Gibbs sampler for single site accumulation
curve
1 Set an initial value β and set number of samples R;
2 for r “ 1 to r “ R do
3 for i “ 1 to i “ n ´ 1 do
4 Sample pωi | βq „ PolyaGammap1,vT

i βq;
5 end
6 Sample pβ | ω,dq „ N3pµω,Σωq1pβ1 ă 0, β2 ď 0q, with µω, Σω in (B.5);

7 end
8 Output: collection of R samples for β

B.3 Posterior sampling for multi-site data

We now describe a Markov Chain Monte Carlo algorithm for Bayesian inference for

the covariate-dependent model described in the manuscript. Recall that we are given

a collection of L accumulation curves pK1nqně1, . . . , pKLnqně1 observed up to the

terms n1, . . . , nL. Each curve is associated to a set of covariates zℓ “ pzℓ1, . . . , zℓpqT

for ℓ “ 1, . . . , L. Future observations correspond to new discoveries within the set of

the considered L curves, so that new covariates values are not expected.

Let pDℓnqně1 be the sequence of discovery indicators for the ℓth location, with

probabilities pπℓnqně1. Hence, we get

log
πℓn`1

1 ´ πℓn`1

“ βℓ0 ` βℓ1 log n ` βℓ2n “ zTℓ γ0 ` pzTℓ γ1q log n ` pzTℓ γ2qn,

with γ0,γ1,γ2 P Rp coefficient vectors such that zTℓ γ2 ă 0 and zTℓ γ2 ď 0 for every

ℓ “ 1, . . . , L. The above specification is a logistic regression and therefore inference

on the parameters γ “ pγ0,γ1,γ2q
T may be conducted through a simple modification

of Algorithm 3.

Let N “
řL

ℓ“1pnℓ ´1q and let V be a design matrix with N rows and 3p columns,

with rows vpℓiq “ pzTℓ , z
T
ℓ log i, zTℓ iq

T for i “ 1, . . . , nℓ ´ 1 and ℓ “ 1, . . . , L. Moreover,

call d “ pdT
1 , . . . ,d

T
LqT the realized discoveries, with dℓ “ pdℓ2, . . . , dℓnℓ

qT be the ob-

served values for Dℓ1, . . . , Dℓn, for every ℓ “ 1, . . . , L. As before, we can incorporate
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the constraints zTℓ γ1 ă 0 and zTℓ γ2 ď 0 by assigning γ a multivariate truncated

normal prior,

γ „ N3ppµ,Σq1pzTℓ γ1 ă 0; zTℓ γ2 ď 0; ℓ “ 1, . . . , Lq.

Let ω be a N -dimensional vector of Pólya-gamma latent variables. Then, the full

conditional for pγ | ω,dq is a multivariate truncated normal distribution with mean

µω and covariance matrix Σω equal to equation (B.5), whereas Ω is a diagonal

matrix whose diagonal elements are those of the vector ω.

In Algorithm 4 we employ a vanilla acceptance rejection sampler for the full con-

ditional pγ | ω,dq. This is indeed a reasonable approach in most practical settings,

as the data usually support the required constraints, leading to very high accep-

tance rates. If needed, suitable adaptations of the ideas of Botev (2017) may be

alternatively considered.

Algorithm 4: Pólya-Gamma Gibbs sampler for covariate-dependent accu-
mulation curves
1 Set an initial value γ and set the number of samples R;
2 for r “ 1 to r “ R do
3 for ℓ “ 1 to ℓ “ L do
4 Sample pωpℓiq | γq „ PolyaGammap1,vT

pℓiqγq, i “ 1, . . . , nℓ ´ 1;

5 end
6 Sample pγ | ω,dq „ N3ppµω,Σωq, with µω, Σω as in (B.5) until γ

satisfies zTℓ γ1 ă 0 and zTℓ γ2 ď 0 for every ℓ “ 1, . . . , L;

7 end
8 Output: collection of R samples for γ

B.4 Simulation

In this Section, we extend the simulation studies performed in Section 5 in the main

paper. Our purpose is to evaluate the performance of the models under different

scenarios, with varying hyperparameters. Details of the sampling distributions are
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provided in each setting. For aesthetic reasons, all plots and tables are reported at

the end of the section.

B.4.1 Dirichlet process

The Dirichlet process (Ferguson, 1973) is the first example of species sampling model

we consider. Given an exchangeable sequence pXnqně1, let X
˚
1 , . . . , X

˚
k denote the

labels of the Kn “ k distinct species appeared up to n, with frequencies n1, . . . , nk

and
řk

j“1 nj “ n. As described in Blackwell and MacQueen (1973), the species of

the n ` 1 individual is determined by the allocation scheme

Xn`1 | X1, . . . , Xn “

#

“new”, with probability α{pα ` nq

X˚
j , with probability nj{pα ` nq, pj “ 1, . . . , kq

(B.6)

with α ą 0. As α increases, the probability of observing new species increases; the

higher α, the higher Kn is for given n, with Kn „ α log n asymptotically. Table B.1

reports the performance of the different models in terms of average mean square

error when the data are simulated from a Dirichlet process. Each simulation is

repeated 500 times in each scenario in the same way as described in the main paper.

Generally, the three-parameter log-logistic performs well in sample, while the true

model achieves the best performance in the test set. Figure B.1 depicts one example

of a simulated accumulation curve for each value chosen for α. The performance of

each model is roughly comparable both in- and out-of sample, with the exception of

the beta-gos-1. The reason is that almost all models admit the Dirichlet process

as a special case.

B.4.2 Pitman–Yor process

The Pitman-Yor process (Perman et al., 1992) generalizes the Dirichlet process in

equation (B.6) by the inclusion of an additional parameter, σ, which controls the tail
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behavior of the allocation scheme. For an exchangeable sequence pXnqně1, given

Kn “ k distinct species detected at n, labelled as X˚
1 , . . . , X

˚
k with frequencies

n1, . . . , nk, the species of the n ` 1 individual follows

Xn`1 | X1, . . . , Xn “

#

“new”, with probability pα ` σkq{pα ` nq

X˚
j , with probability pnj ´ σq{pα ` nq, pj “ 1, . . . , kq,

(B.7)

with α ą ´σ and σ P r0, 1q. When σ “ 0, Equation (B.7) reduces to (B.6), while,

when σ increases, the probability of detecting new species increases as well. This

implies a steeper accumulation curve, as depicted in Figure B.2. The Pitman–Yor

admits a closed form law for the random partition Πn “ tC1, . . . , Cku with nj “

cardpCjq generated by equation (B.7). This is known as an exchangeable partition

probability function, and for Kn “ k is equal to

PpΠn “ tC1, . . . , Ckuq “

śk´1
i“1 pα ` iσq

pα ` 1qn´1

k
ź

i“1

p1 ´ σqni´1. (B.8)

Equation (B.8) can be used as a likelihood when estimating the parameters α and

σ. In this section and in Section 5 of the man paper, this is done by empirical Bayes

through standard maximization routines. Table B.2 reports the average mean square

error of the models across 500 accumulation curves simulated from the Pitman–Yor

process with varying values for σ. The results further confirm the similarities between

the Pitman–Yor process and the beta-gos-2 in terms of accumulation curves. This

similarity, however, does not hold when considering clustering, as detailed in Airoldi

et al. (2014).

B.4.3 Dirichlet-multinomial

The Dirichlet-multinomial process is a special case of the urn scheme in equa-

tion (B.7) with parameters σ ă 0 and α “ ´σH, where H is an integer representing
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the total number of distinct species tags in the population. In this case, estimation

can proceed by selecting a grid of values for H, say H “ k, . . . , k` hm with hm P N,

and then estimating σ by maximizing equation (B.8) conditional on each H. The

optimal value for pH, σq is the pair that has the highest likelihood. Notice that σ

controls the steepness with which the accumulation curve reaches H, as depicted

in Figure B.3. The majority of the models, with the exception of the Pitman–Yor

and the Dirichlet process, perform well in that they correctly guess the value of H.

Table B.3 confirms this behavior. Not surprisingly, the best out-of-sample perfor-

mance is achieved by the Dirichet-multinomial, while the three-parameter log-logistic

performs well in-sample. Good performances are also obtained by the beta-gos-2.

B.4.4 beta-gos

The beta-gos process (Airoldi et al., 2014) is a generalization of the urn schemes

in equation (B.7) that relaxes the exchangeability assumption. In particular, given

the sequence of tags X1, . . . , Xn, the species of the n ` 1 individual follows

Xn`1 | X1, . . . , Xn “

#

“new”, with probability
śn

i“1Wi,

Xi, with probability p1 ´ Wiq
śn

j“i`1Wj, pi “ 1, . . . , nq,

(B.9)

with Wi „ betapai, biq for each i “ 1, . . . , n. Hence, the allocation probabilities

are random instead of fixed. The freedom in choosing ai and bi allow for a flexible

model. We consider the case when ai “ θ ` i ´ 1 with θ ą 0 and bi “ β ą 0. This

is a slightly broader scenario than the one in Airoldi et al. (2014), where instead

β ě 1. We adopt this choice to mirror the same behavior as the one in our two-

parameter log-logistic distribution, thus making the beta-gos a valid competitor.

Indeed, it is possible to prove that when β ą 1 then EpKnq ă 8, while if β ď 1

we have that EpKnq “ 8. Estimation of the parameters β and θ can be carried via

method of moments as described in the main paper. Figure B.4 shows the shape of
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the accumulation curve generated from the beta-gos-2 with varying values from β

and θ “ 500. Notice that the curves are diverging for values of β ď 1. Overall, the

best performance when β “ 0.25 and β “ 0.75 is achieved by the beta-gos-2. In

the other two cases, the log-logistic model produces a good fit as well. Table B.4

further confirms this fact.

B.4.5 Finite Geometric

In the following subsections, we replicate the analysis described so far on accumu-

lation curves that are generated by taking independent and identically distributed

samples from discrete distributions. Unlike previous scenarios, in this case none of

the competing model is the data generating process. In particular, let Y „ ppyq

denote a discrete random variable, and let Y1, . . . , Yn
iid
„ ppyq. Then, we construct

the species sequence pXiq
n
i“1 by setting Xi “ yi for each i “ 1, . . . , n, where yi is the

realized value of Yi. As these draws are discrete, the sequence pXiq
n
i“1 will show ties

among the associated labels. This allows for the construction of a valid accumulation

curve.

The first distribution we consider is the finite geometric, where

ppyq 9 ηy, y “ 1, . . . , H,

with η P p0, 1q. Here, the truncation point H and can be interpreted as the species

richness, while the parameter η governs the trajectory of the generated curve. The

closer η is to 1, the higher the probability of observing values for y close to H is.

See Figure B.5 for an example. Table B.5 reports the performances of the models

when tested on curves generated with varying values for η, fixing H “ 100 for

simplicity. Generally, all models perform well, with relatively small differences in

terms of average mean square error.
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B.4.6 Finite Zipf

The second example we consider is when Y follows a Zipf distribution with finite

support, for which

ppyq 9 y´η, y “ 1, . . . , H

with η ą 0 and H being the species richness. As seen in Figure B.6, smaller values for

η make the curve quickly reach the asymptoteH. Model performances are reported in

Table B.6. Interestingly, the Dirichlet-multinomial model becomes unstable when η is

low. In this simulation setting, our three-parameter log-logistic performs particularly

well.

B.4.7 Geometric

We consider now the cases where Y is a distribution with unbounded domain. In

this case, the number of species observable is infinite. When Y follows a geometric

distribution, the probability mass function is

ppyq “ p1 ´ ηq
y´1η, y “ 1, 2, . . .

with η P p0, 1q regulating the shape of trajectory. The closer η is to 0, the higher

the number of distinct species appearing is. On the other hand, if η is close to 1, the

number of distinct species is generally low. See Figure B.7. Table B.7 summarises

model performances. We notice that the three-parameter log-logistic performs well

in-sample, while the best performances out-of-sample are retained by Dirichlet and

Pitman–Yor.

B.4.8 Zipf

As a last case, we consider curves generated from a Zipf distribution with unbounded

domain, where

ppyq “
1

yηζpηq
, y “ 1, 2, . . .
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where η ą 1 and ζpηq “
ř8

y“1 y
´η is the Riemann zeta function. To sample from

the distribution, refer to Devroye (1986b), Chapter 10.6.1. As shown in Figure B.8,

the closer η is to 1, the steeper the associated accumulation curve is. Model per-

formances are reported in Table B.8. The beta-gos-2 and the two- and three-

parameter log-logistic all perform well. The Pitman–Yor shows some instability

in-sample as η increases, but predicts well out-of-sample. Finally, the Dirichlet, the

Dirichlet-multinomial and the beta-gos-1 lack flexibility.
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Table B.1: Performance for curves simulated via independent samples from the
Dirichlet process. Values report average mean square error across 500 simulations of
each scenario, with curves of length 30, 000. Training set consists of the first 10, 000
observations.

dirichlet process
α “ 5 α “ 10 α “ 100 α “ 500

model train test train test train test train test

dp (ll1) 3.6 3.6 6.5 7.6 47.9 72.9 161.4 365.9
py 3.1 4.2 5.5 8.8 41.9 84.6 144.7 481.8
dm 3.0 4.2 5.5 9.4 45.0 90.3 211.9 807.6
bg-1pa, bq 47.7 16.5 166.7 58.7 8,388.3 5,176.4 49,896.8 118,940.6
bg-2pθ, βq 2.4 7.1 4.4 14.7 29.6 157.8 82.9 1191.0
ll2 2.1 4.9 3.8 11.3 26.8 108.1 78.5 706.4
ll3 1.5 7.2 3.0 16.8 21.1 279.3 61.7 2283.7
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Figure B.1: In- and out-of-sample predictions for the different models on four
randomly simulated curves from the Dirichlet process with varying α. White dots
indicate the true values. Vertical line is the train-test cutoff. Curve simulation and
model estimation proceeded as in Table B.1
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Table B.2: Performance for curves simulated via independent samples from the
Pitman–Yor process. See Table B.1 for further details

pitman–Yor process
α “ 10, σ “ 0.1 α “ 10, σ “ 0.3 α “ 10, σ “ 0.7 α “ 10, σ “ 0.9

model train test train test train test train test

dp (ll1) 22.9 31.8 552.8 1279.8 5.9 ˆ 104 6.6 ˆ 105 1.4 ˆ 105 7.3 ˆ 106

py 7.9 21.8 28.2 123.6 378.2 2300.9 2002.9 6404.4
dm 22.9 32.9 543.1 1312.4 4.6 ˆ 104 7.7 ˆ 105 9.6 ˆ 104 1.4 ˆ 107

bg-1pa, bq 510.1 242.4 4784.5 4367.2 2.4 ˆ 105 1.6 ˆ 106 2.4 ˆ 105 1.6 ˆ 107

bg-2pθ, βq 7.2 31.7 19.6 193.5 135.9 4599.1 247.4 14983.9
ll2 6.3 23.0 20.8 149.2 229.9 10775.0 406.4 56110.5
ll3 5.1 39.5 19.0 248.4 227.4 12461.9 400.0 68663.7
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Figure B.2: In- and out-of-sample predictions for the different models on four
randomly simulated curves from the Pitman–Yor process with varying σ and α “ 10.
White dots indicate the true values. Vertical line is the train-test cutoff. Curve
simulation and model estimation proceeded as in Table B.2
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Table B.3: Performance for curves simulated via independent samples from the
Dirichlet-multinomial. See Table B.1 for further details

dirichlet-multinomial
H “ 1000, σ “ ´0.1 H “ 1000, σ “ ´0.5 H “ 1000, σ “ ´1.5 H “ 1000, σ “ ´3

model train test train test train test train test

dp (ll1) 97.1 168.0 2409.9 6240.5 10633.5 24150.6 17780.4 33240.5
py 97.0 168.4 2409.9 6239.0 10633.5 24146.9 17780.4 33235.9
dm 25.9 65.4 51.1 82.9 48.0 35.0 40.0 9.8
bg-1pa, bq 4390.6 1862.8 9466.2 3880.3 4489.4 776.4 1699.0 95.0
bg-2pθ, βq 22.2 110.3 38.6 161.2 34.9 65.3 30.9 17.7
ll2 20.8 79.7 78.0 442.0 300.7 1240.3 528.0 1235.1
ll3 14.2 178.9 23.4 462.8 26.8 187.3 22.5 33.3
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Figure B.3: In- and out-of-sample predictions for the different models on four
randomly simulated curves from the Dirichlet-multinomial with varying σ and H “

1000. White dots indicate the true values. Vertical line is the train-test cutoff. Curve
simulation and model estimation proceeded as in Table B.3
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Table B.4: Performance for curves simulated via independent samples from the beta-
gos-2 process. See Table B.1 for further details

beta-gos
θ “ 500, β “ 0.25 θ “ 500, β “ 0.75 θ “ 500, β “ 1 θ “ 500, β “ 1.5

model train test train test train test train test

dp (ll1) 37877.0 2.9 ˆ 106 3673.8 42109.9 162.6 426.3 2492.5 6312.5
py 20823.0 1.4 ˆ 106 1581.5 18097.5 148.1 529.7 2492.5 6311.1
dm 29561.1 5.8 ˆ 106 4696.9 69629.6 200.8 921.8 1264.9 2927.3
bg-1pa, bq 87671.7 9.5 ˆ 106 91985.8 640285.0 49465.2 119401.4 9341.8 3882.7
bg-2pθ, βq 220.7 17177.4 132.6 3384.9 92.6 1263.8 38.4 159.0
ll2 571.7 177321.3 165.9 4827.2 85.9 765.5 79.8 438.9
ll3 571.5 177631.4 162.6 6358.2 68.3 2636.6 22.8 458.3
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Figure B.4: In- and out-of-sample predictions for the different models on four
randomly simulated curves from the beta-gos with θ “ 500 and varying β. White
dots indicate the true values. Vertical line is the train-test cutoff. Curve simulation
and model estimation proceeded as in Table B.4
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Table B.5: Performance for curves simulated via independent samples from a finite
Geometric distribution. See Table B.1 for further details

finite geometric
η “ 0.3, H “ 100 η “ 0.5, H “ 100 η “ 0.75, H “ 100 η “ 0.9, H “ 100

model train test train test train test train test

dp (ll1) 0.5 0.4 0.8 0.8 1.9 2.1 5.9 6.9
py 0.5 0.4 0.7 0.8 1.8 2.1 5.9 6.9
dm 0.5 0.6 0.7 1.0 1.6 2.8 4.3 8.6
bg-1pa, bq 1.9 0.7 4.8 1.7 23.9 7.4 147.6 45.5
bg-2pθ, βq 0.5 1.1 0.8 1.8 1.7 4.9 4.2 13.5
ll2 0.3 0.6 0.5 1.1 1.3 2.9 3.4 8.5
ll3 0.2 0.7 0.4 1.3 1.1 3.8 3.1 12.5
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Figure B.5: In- and out-of-sample predictions for the different models on four
randomly simulated curves from the Finite Geometric for varying η and H “ 100.
White dots indicate the true values. Vertical line is the train-test cutoff. Curve
simulation and model estimation proceeded as in Table B.5
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Table B.6: Performance for curves simulated via independent samples from a Zipf
with finite support. See Table B.1 for further details.

finite zipf
η “ 0.1, H “ 3000 η “ 0.5, H “ 3000 η “ 1, H “ 3000 η “ 1.5, H “ 3000

model train test train test train test train test

dp (ll1) 5.4 638157.2 16557.5 372939.0 18691.3 17251.5 9045.9 34708.9
py 54380.8 638070.3 16557.5 372877.9 671.0 84226.4 414.9 1033.0
dm . . 656.2 37998.4 16059.1 31774.8 8457.8 35998.8
bg-2pa, bq 182.0 142.6 12946.8 21034.5 136767.4 319327.3 38438.3 72275.6
bg-2pθ, βq 147.5 569.4 432.1 29965.3 610.5 92544.8 49.8 1443.2
ll2 2389.0 80017.1 1767.5 117674.8 627.0 91648.5 42.0 901.1
ll3 67.2 652.6 71.6 1470.8 67.9 7858.0 31.1 1799.6
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Figure B.6: In- and out-of-sample predictions for the different models on four
randomly simulated curves from the Finite Zipf for varying η and H “ 3000. White
dots indicate the true values. Vertical line is the train-test cutoff. Curve simulation
and model estimation proceeded as in Table B.6
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Table B.7: Performance for curves simulated via independent samples from the Ge-
ometric distribution. See Table B.1 for further details

geometric
η “ 0.001 η “ 0.01 η “ 0.25 η “ 0.5

model train test train test train test train test

dp (ll1) 5445.5 31611.5 221.4 181.6 1.7 2.0 0.8 0.9
py 5445.5 31592.5 221.4 181.5 1.7 2.0 0.7 0.9
dm 289.8 19764.1 56.8 267.1 1.5 2.8 0.7 1.2
bg-1pa, bq 27689.4 3.9 ˆ 105 7798.4 5127.3 23.1 8.0 4.8 1.9
bg-2pθ, βq 233.8 21554.7 43.1 199.5 1.6 4.3 0.8 2.2
ll2 140.1 2737.7 37.5 195.2 1.2 2.7 0.5 1.2
ll3 98.3 16803.9 36.8 248.2 1.0 3.9 0.4 1.5
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Figure B.7: In- and out-of-sample predictions for the different models on four
randomly simulated curves from the geometric distribution. White dots indicate
the true values. Vertical line is the train-test cutoff. Curve simulation and model
estimation proceeded as in Table B.7
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Table B.8: Performance for curves simulated via independent samples from the Zipf
distribution. See Table B.1 for further details

zipf
η “ 1.25 η “ 1.75 η “ 2.5 η “ 3

model train test train test train test train test

dp (ll1) 1.1 ˆ 105 1.5 ˆ 106 3132.3 11702.0 95.6 184.0 21.8 31.8
py 3945.7 3178.0 942.8 243.3 116.7 29.2 47.3 11.6
dm 78659.6 1.8 ˆ 106 3022.7 11878.1 95.0 184.6 21.7 31.9
bg-1pa, bq 3.2 ˆ 105 3.2 ˆ 106 11842.0 20908.0 347.3 341.3 78.4 60.9
bg-2pθ, βq 165.0 6673.2 24.2 421.7 4.7 53.4 2.2 20.0
ll2 201.1 10458.4 24.1 290.5 4.2 32.2 2.0 12.1
ll3 194.4 17044.0 21.4 713.4 3.3 65.2 1.5 20.3
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Figure B.8: In- and out-of-sample predictions for the different models on four
randomly simulated curves from the Zipf distribution. White dots indicate the true
values. Vertical line is the train-test cutoff. Curve simulation and model estimation
proceeded as in Table B.8
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B.5 Application: Copepod species counts

In this Section, we extend the discussion about the copepod species counts applica-

tion of Section 5. In particular, we consider further train-test splits, we include plots

for the model performances and estimates for the parameters.

In this analysis, we adopt a fully Bayesian approach to estimation when possible.

This allows to compute 95% posterior credible intervals for the out-of-sample predic-

tions, which we construct by simulating one posterior trajectory Kn`m | D1, . . . , Dn

with m ě 1 for each posterior sample. For the specific prior structure in each

model, refer to the main paper. This is relatively easy for our log-logistic mod-

els and for the species sampling sequences. On the other hand, the latent beta

reinforcements in the beta-gos processes make both the parameter likelihood in-

tractable and posterior predictive checks costly. For example, drawing one posterior

trajectory Kn`m | D1, . . . , Dn requires to sample n ` m independent beta random

variables at each m, with an associated computational cost of Opm2 ` nmq. This is

infeasible for long accumulation curves like the one in the copepod data. Similarly

to the simulation Section, we solve the first issue by doing estimation via method of

moments. As for the second issue, we decide to simulate trajectories by fixing the

values of each Wi to their averages. Here, the associated loss in uncertainty quan-

tification is minor. To see this, it is sufficient to look at the variance of the discovery

probability rn “
śn

i“1Wi at n ` 1, which is equal to

varprnq “

!θ ` β

θ

θ ` n

θ ` β ` n
´ 1

)!

pθqβ

pθ ` nqβ

)2

. (B.10)

This follows from the fact that the Wi’s are independent beta random variables, so

that varprnq “
śn

i“1EpW 2
i q ´

!

śn
i“1EpWiq

)2

, with

EpWiq “
i ` θ ´ 1

i ` θ ´ 1 ` β
, EpW 2

i q “
i ` θ ´ 1

i ` θ ´ 1 ` β

i ` θ

i ` θ ` β
.
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Figure B.9: In- and out-of-sample predictions over different random splits in the
copepod dataset. White dots indicate true values. Lines obtained by averaging
EpKnq and EpKn`m | D1, . . . , Dnq for each posterior sample.

For large values of θ and n, the quantities pθ ` βq{θ and pθ ` nq{pθ ` β ` nq in

equation (B.10) are approximately one. Moreover, pθ ` nqβ Ñ 8 as n Ñ 8 for

β ě 1. Overall, this implies that the discovery probability rn is heavily concentrated

around its mean when n is large and β ě 1. In this case, varprnq Ñ 0 as n Ñ 8.

Figure B.9 displays the in- and out-of-sample predictions of all the competitor

models against different random splits of the data. The lines reported are a juxta-

position of the average values of EpKnq and EpKn | D1 . . . , Dnq computed for each

posterior sample. We omit reporting the beta-gos-1 due to its lack of flexibility.

The following are worth mentioning. First, the three-parameter log-logistic performs

generally well in-sample, and slightly under-predicts the true number of species out-

of-sample. Second, the closer is the train-test cutoff to the true length of the curve,

the better the performance of the beta-gos-2 appears. This confirms the flexibility
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of the process already noted in the simulation study. On the other hand, all the

other models estimate a wrong trajectory, irrespective of the cutoff. This is expected

in the Pitman–Yor and in the Dirichlet process, as they assume an infinite species

richness.

Tables B.9, B.10, B.11 and B.12 report the in-sample mean square error, the out-

of-sample predictions and the average posterior estimates of the parameters for each

model in the same setting of Figure B.9. True values K̄n`m for the rarefaction curve

are indicated in the first row. It is worth noticing the following. First, in the cases

when the train-test cutoff is 1{5 and 1{3, the three-parameter log-logistic is almost

the unique model that covers the true values of the curve. All the other models

instead tend to overestimate the number of distinct species out-of-sample, with the

exception of the beta-gos-1, which however shows a severe lack of flexibility. On

the other hand, the 1/2 and the 2/3 scenarios seem to favor the beta-gos-2 as the

most accurate model, whereas the three-parameter log-logistic converges too quickly.
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Table B.9: Model performance and estimated parameters over the 1{5 train-test
split.

train=1{5 n “ 365, 953, Kn “ 358

model parameters mse m “ n{2 m “ n m “ 2n m “ 4n

K̄n`m 365.16 368.87 372.86 378

dp (ll1) α = 39.1 50.41 373.93 385.21 401.08 421.15
(367, 382) (375, 397) (388, 415) (405, 439)

py pα, σq = (37.43, 0.01) 60.91 374.56 386.35 402.94 424.03
(367, 384) (376, 399) (389, 419) (406, 446)

dm pσ,Hq = (-0.01, 3436) 41.60 373.01 383.58 398.36 416.95
(366, 381) (374, 394) (386, 412) (401, 434)

bg-1pa, bq ρ ą 0.99 2703.71 358 358 358 358
(358, 358) (358, 358) (358, 358) (358, 358)

bg-2pθ, βq pθ, βq = (54.75, 1.07) 73.8 369.72 377.79 388.87 402.4
(364, 377) (370, 387) (379, 400) (390, 416)

ll2 pα, σq = (13, 16.71) 125.22 376.48 389.73 408.56 432.85
(368, 386) (378, 404) (392, 428) (410, 459)

ll3 pα, σ, ϕq = (17.45, 0.12, ¿0.99) 1.59 363.7 365.91 367.32 367.8
(359, 371) (359, 377) (360, 381) (360, 384)

Table B.10: Model performance and estimated parameters over the 1{3 train-test
split.

train=1{3 n “ 609, 922, Kn “ 368

model parameters mse m “ n{4 m “ n{2 m “ n m “ 2n

K̄n`m 370.32 371.8 373.97 378

dp (ll1) α “ 37.95 130.99 376.56 383.47 394.47 409.87
(371, 383) (376, 392) (384, 406) (397, 424)

py pα, σq “ p37.48, 0q 131.21 376.66 383.67 394.83 410.45
(371, 383) (376, 392) (385, 406) (397, 425)

dm pσ,Hq “ p´0.02, 3084q 90.85 375.97 382.38 392.54 406.69
(371, 382) (375, 390) (383, 403) (394, 420)

bg-1pa, bq ρ ą 0.99 2101.28 368 368 368 368
(368, 368) (368, 368) (368, 368) (368, 368)

bg-2pθ, βq pθ, βq “ p65.84, 1.12q 95.25 372.97 376.87 382.94 391.04
(369, 378) (371, 383) (376, 391) (382, 401)

ll2 pα, σq “ p15.22, 19.37q 178.23 377.04 384.38 396.08 412.58
(372, 384) (376, 394) (385, 409) (397, 430)

ll3 pα, σ, ϕq = (18.88, 0.1, ¿0.99) 3.52 370.17 371.33 372.4 372.93
(368, 374) (368, 377) (368, 380) (368, 381)

145



Table B.11: Model performance and estimated parameters over the 1{2 train-test
split.

train=1{2 n “ 914, 884, Kn “ 370

model parameters mse m “ n{5 m “ n{3 m “ n{2 m “ n

K̄n`m 371.63 372.68 373.99 378

dp (ll1) α = 36.49 288.2 376.69 380.54 384.87 395.39
(372, 382) (375, 387) (378, 393) (386, 406)

py pα, σq “ p36.26, 0q 289.62 376.74 380.62 384.98 395.59
(372, 382) (375, 388) (378, 393) (386, 406)

dm pσ,Hq “ p´0.02, 2406q 181.41 376.03 379.51 383.4 392.81
(372, 381) (374, 386) (377, 391) (383, 403)

bg-1pa, bq ρ ą 0.99 1517.17 370 370 370 370
(370, 370) (370, 370) (370, 370) (370, 370)

bg-2pθ, βq pθ, βq “ p83.39, 1.19q 140.17 372.67 374.18 375.83 379.68
(370, 376) (371, 379) (372, 381) (374, 386)

ll2 pα, σq = (17.86, 22.58) 246.35 376.39 380.08 384.2 394.22
(372, 382) (374, 387) (377, 393) (384, 406)

ll3 pα, σ, ϕq “ p19.75, 0.1,ą 0.99q 3.87 370.84 371.17 371.44 371.76
(370, 373) (370, 374) (370, 375) (370, 376)

Table B.12: Model performance and estimated parameters over the 2{3 train-test
split.

train=2{3 n “ 1, 219, 845, Kn “ 371

model parameters mse m “ n{10 m “ n{5 m “ n{3 m “ n

K̄n`m 372.4 373.76 375.63 378

dp (ll1) α “ 35.48 441.12 374.4 377.45 381.21 385.44
(371, 378) (373, 383) (375, 388) (378, 394)

py pα, σq “ p35.34, 0q 436.06 374.42 377.49 381.27 385.53
(371, 378) (373, 383) (375, 388) (378, 394)

dm pσ,Hq “ p´0.03, 1759q 251.61 373.93 376.55 379.78 383.39
(371, 378) (372, 382) (374, 386) (377, 391)

bg-1pa, bq ρ ą 0.99 1174.38 371 371 371 371
(371, 371) (371, 371) (371, 371) (371, 371)

bg-2pθ, βq pθ, βq “ p100.95, 1.25q 182.05 371.97 372.81 373.82 374.91
(371, 374) (371, 376) (371, 378) (372, 379)

ll2 pα, σq “ p19.94, 25.1q 302.53 374.02 376.72 380.04 383.76
(371, 378) (372, 382) (374, 387) (377, 392)

ll3 pα, σ, ϕq “ p20.01, 0.09,ą 0.99q 3.53 371.23 371.38 371.51 371.61
(371, 373) (371, 373) (371, 374) (371, 374)

146



B.6 Finnish fungal biodiversity imputation strategy

In this Section, we comment on the imputation strategy of the finnish fungal biodi-

versity study. The original version of the data consist of 174 samples from different 5

cities in Finland (Helsinki, Lathi, Joensuu, Tampere and Jyväskylä), collected either

from air or soil in an urban or a rural environment. Each sample reports the abun-

dances (i.e. the frequencies) of the different fungal operational taxonomic units -

otus, a proxy for species - identified via high-throughput sequencing of the collected

dna. Such identification pipeline, however, is potentially subject to sequencing er-

ror. To cope for the issue, ecologists often remove all the otus appearing only once

in the a given sample. See (Abrego et al., 2020) for further details.

The presence of true singletons in the data however has a large impact on the

steepness of the accumulation curves and in the subsequent estimators for the species

richness (e.g Chao, 1984). For this reason, we decide to adopt the following imputa-

tion strategy. Let j “ 1, 2, 3 . . . be the count index, and n̄j be the number of species

in a given sample having frequency j. In our data, n̄1 “ 0. To impute it, we run the

following linear model:

log n̄j “ δ0 ` δ1 log j ` ϵj,

for j “ 2, . . . , J . The parameters δ0 and δ1 are estimated through ordinary least

squares, rounded to the closes integer. Then, the estimate is for n̄1 is exactly exptδ̂0u,

namely the exponential of the intercept term. Notice that the choice for the trunca-

tion frequency J has to be carefully selected, as typically n̄j is equal to 1 for large

values of j. This is because highly frequent species do not appear the same exact

number of times in large samples. If we where to include all the possible values for j,

this would result in a very low estimate for the intercept. Our choice for J is the first

j for which
řj

s“2 n̄s{k ě 0.75, where k is the total number of species in the samples

excluding the singletons.
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Figure B.10: Linear imputation of the singletons in two samples from the fungal
biodiversity study. The red line is the least squares regression line, the circles indicate
the observed frequencies and the black dot indicates the imputed value for log n̄1

Figure B.10 reports two examples of the our linear model imputation strategy.

For further details on the data, refer to Chapter 3.
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Appendix C

Supplementary material for Chapter 4 - Inferring
taxonomic placement from DNA barcoding aiding

in discovery of new taxa

This Appendix contains mathematical details for the BayesANT algorithm - BAYESiAn

Nonparametric Taxonomic classifier - described in Chapter 4. Emphasis is on the

explicit formulas for the taxonomic annotation probabilities and the associated es-

timation method for the model parameters. Moreover, it reports additional simu-

lations 1) to test the algorithm under the presence of alignment gaps “-” in both

the training and the test sequences, and 2) to test the method when the training

library is significantly smaller than the test one. The Appendix is divided as follows.

Section C.1 contains details on the prior taxonomic probabilities, and Section C.2 on

the associated posterior ones. Section C.3 contains additional analyses on the Fin-

BOL data. Section C.4 assesses the impact of the alignment gaps on the prediction.

Finally, Section C.5 evaluates the performance of BayesANT under varying size of

the training library.
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C.1 Prior taxonomic probabilities

In this Section, we provide details on the prior probabilities over the nodes in the

taxonomic tree and describe the estimation procedure for the associated hyperpa-

rameters.

C.1.1 The Pitman–Yor process and the exchangeable partition probability function

BayesANT models taxonomic novelty via Pitman–Yor process priors (Pitman and

Yor, 1997). As already detailed in the main paper, the process works as follows. Let

X1, . . . , Xn be a sequence of taxon assignments for the DNA sequences in the training

library, comprising of a total of Kn “ k distinct labels denoted as X˚
1 , . . . , X

˚
k and

appearing with frequencies n1, . . . , nk. Then, the taxon of the pn` 1qth observation

is determined via the following allocation scheme:

pXn`1 | X1, . . . , Xnq “

#

“new”, with prob. pα ` σkq{pα ` nq,

X˚
j , with prob. pnj ´ σq{pα ` nq, pj “ 1, . . . , kq,

(C.1)

where σ P r0, 1q is a discount parameter governing the tail of the process and α ą ´σ

is a precision parameter. High values for α and σ lead to a high number of distinct

labels Kn. Moreover, high values for nj lead to a high probability that taxon X˚
j will

be observed in the future. See Figure 1 in the main paper for a practical illustration.

Estimation of both parameters can be performed via an empirical Bayes procedure

(Favaro et al., 2009) through maximization of the quantity known as exchangeable

partition probability function (EPPF, Pitman, 1996). Let Nj denote the random

variable corresponding to the frequency of appearance of taxon X˚
j , with nj the
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realization of this random variable for Kn “ k. The EPPF is defined as

ppKn “ k,N1 “ n1, . . . , Nk “ nkq “

śk´1
i“1 pα ` iσq

pα ` 1qn´1

k
ź

j“1

p1 ´ σqnj´1, (C.2)

where pxqa “ Γpx ` aq{Γpxq is the Pochhammer factorial and Γpxq is the gamma

function. The quantity in equation (C.2) can be interpreted as a likelihood function

arising from the process in equation (C.1). Then, one can simply apply maximum

likelihood estimation as

pα̂, σ̂q “ argmaxα,σ

#

śk´1
i“1 pα ` iσq

pα ` 1qn´1

k
ź

j“1

p1 ´ σqnj´1

+

, σ P r0, 1q, α ą ´σ.

In what follows, we apply this procedure to estimate the parameters αℓ and σℓ for

all levels ℓ “ 1, . . . , L in the taxonomic tree.

C.1.2 Level-specific Pitman–Yor priors

Consider a taxonomic library Dn “ pXi,Yiq
n
i“1 of size n and of L ě 2 levels, where

Xi “ pXi,ℓq
L
ℓ“1 are the taxonomic annotations for DNA sequence Yi. Following the

notation in the main paper, we let X˚
j,ℓ be the jth taxon and X

pnq

¨,ℓ “ pXi,ℓq
n
i“1 be the

sequence of taxa observed for level ℓ. To construct the taxonomic tree, we introduce

the following quantities. For a generic taxon xℓ at level ℓ, we define papxℓq as the

unique parent node of xℓ at level ℓ ´ 1 and ρnpxℓq as the set of nodes xℓ`1 at level

ℓ` 1 such that papxℓ`1q “ xℓ. We also let Knpxℓq “ |ρnpxℓq| be the number of nodes

linked to xℓ at level ℓ ` 1 and Nnpxℓq be the size of the taxon, namely the number

of DNA sequences linked to xℓ. Then, BayesANT follows the prediction scheme in

equation (C.1) by letting

pXn`1,ℓ | Xn`1,ℓ´1 “ xℓ´1,X
pnq

¨,ℓ q “

#

“new”, with probability αℓ`σℓKnpxℓ´1q

αℓ`Nnpxℓ´1q
,

X˚
j,ℓ, with probability

NnpX˚
j,ℓq´σℓ

αℓ`Nnpxℓ´1q
,

(C.3)
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for j : papX˚
j,ℓq “ xℓ´1, where σℓ P r0, 1q and αℓ ą ´σℓ are rank-specific parameters.

Equation (C.3) holds independently for all the observed nodes xℓ´1 at level ℓ ´

1. Specifically, we model all the separate sets of taxa ρnpxℓ´1q at a given rank ℓ

as realizations from independent Pitman–Yor processes. In estimating parameters

αℓ, σℓ, we borrow information across branches. The level-specific EPPF is a product

of EPPFs, and the estimates for αℓ and σℓ are obtained as

pα̂ℓ, σ̂ℓq “ argmaxαℓ,σℓ

$

&

%

ź

xPXℓ´1

śKnpxq´1
i“1 pαℓ ` iσℓq

pαℓ ` 1qNnpxq´1

ź

xℓPρnpxq

p1 ´ σℓqNnpxℓq´1

,

.

-

, (C.4)

for σℓ P r0, 1q, αℓ ą ´σℓ, where Xℓ´1 denotes the set of all taxonomic nodes X˚
j,ℓ´1

observed in the library at level ℓ´ 1. The maximization in equation (C.4) can easily

be carried out with routine methods such as nlminb in R.

C.1.3 Taxonomic branch probabilities

After αℓ and σℓ have been estimated from the library Dn, BayesANT specifies the

prior probability for each branch x “ px1, . . . , xLq, including ones with new nodes,

through the chain rule as a product of conditional Pitman–Yor probabilities. For the

pn ` 1qth sequence, this is equal to

πn`1pxq “ ppXn`1 “ x | Xpnq
q

“ ppVn`1,1 “ x1 | X
pnq

¨,1 q ˆ

L
ź

ℓ“2

ppVn`1,ℓ “ xℓ | Xn`1,ℓ´1 “ xℓ´1,X
pnq

¨,ℓ q.
(C.5)

To see this explicitly, consider the example of a L “ 4 level library of size n and let

X˚
1,1 Ñ X˚

1,2 Ñ X˚
1,3 Ñ X˚

1,4 be a branch. This is a fully observed branch, for which

papX˚
1,2q “ X˚

1,1, papX˚
1,3q “ X˚

1,2 and papX˚
1,4q “ X˚

1,3. Then, the prior probability

of x1 “ pX˚
1,1, X

˚
1,2, X

˚
1,3, X

˚
1,4q is
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πn`1px1q “
NnpX˚

1,1q ´ σ1

α1 ` n
looooooomooooooon

Prob. of choosing
X˚

1,1 at Level 1

ˆ
NnpX˚

1,2q ´ σ2

α2 ` NnpX˚
1,1q

looooooomooooooon

Prob. of choosing
X˚

1,2 at Level 2

ˆ
NnpX˚

1,3q ´ σ3

α3 ` NnpX˚
1,2q

looooooomooooooon

Prob. of choosing
X˚

1,3 at Level 3

ˆ
NnpX˚

1,4q ´ σ4

α4 ` NnpX˚
1,3q

looooooomooooooon

Prob. of choosing
X˚

1,4 at Level 4

.

Consider instead the path X˚
1,1 Ñ X˚

1,2 Ñ “new” Ñ “new”. This identifies a new

clade at level ℓ “ 3, creating a new leaf. We denote the newly created clade as

x2 “ pX˚
1,1, X

˚
1,2, x

new
3 , xnew4 q. Then, its associated probability is

πn`1px2q “
NnpX˚

1,1q ´ σ1

α1 ` n
looooooomooooooon

Prob. of choosing
X˚

1,1 at Level 1

ˆ
NnpX˚

1,2q ´ σ2

α2 ` NnpX˚
1,1q

looooooomooooooon

Prob. of choosing
X˚

1,2 at Level 2

ˆ
α3 ` σ3KnpX˚

1,2q

α3 ` NnpX˚
1,2q

looooooooomooooooooon

Prob. of novelty
at Level 3

ˆ 1
loomoon

Prob. of novelty
at Level 4

.

Here, the novelty probability of the Pitman–Yor process appears at level 3. At level

4 the probability is equal to one since the node is necessarily new and Knpxnew4 q “

Nnpxnew4 q “ 0. In a similar fashion, the probability for the branch “new” Ñ “new” Ñ

“new” Ñ “new”, namely x3 “ pxnew1 , xnew2 , xnew3 , xnew4 q is

πn`1px3q “
α1 ` σ1Knpv0q

α1 ` n
loooooooomoooooooon

Prob. of novelty
at Level 1

ˆ 1
loomoon

Prob. of novelty
at Level 2

ˆ 1
loomoon

Prob. of novelty
at Level 3

ˆ 1
loomoon

Prob. of novelty
at Level 4

,

since the novelty is detected first at level ℓ “ 1. Finally, notice that a branch such

as X˚
1,1 Ñ X˚

1,2 Ñ “new” Ñ X˚
1,4 is not allowed in our representation. Under such a

formulation, we are able to specify all the prior probabilities for both the observed

taxa and the new ones in a coherent way.

C.2 Posterior taxonomic probabilities

BayesANT assumes DNA sequences Yi associated with branch x “ px1, . . . , xLq with

xℓ P Xℓ are distributed as

pYi | Xi “ x,θxL
q
iid
„ KpYi;θxL

q,
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where Kp¨,θxL
q is a distribution that depends on the leaf-specific vector of param-

eters θxL
. In what follows, we provide mathematical details of the single location

product-multinomial model we use in the main document. Adapting the details to

accommodate alternative kernels is straightforward.

C.2.1 Multinomial kernel

Let Yi, i “ 1, . . . , n, indicate a collection of aligned DNA sequences of length p. The

alignment of the sequences makes the individual loci comparable across taxa. An

example for p “ 20 loci is as follows:

locus s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Y1: A C C T C G G A A A T T T G G A A T C A
Y2: A C T T C G A A T A T A A G A G A T G G
Y3: A T T C C G T A G G T T T G A G T T G A

As each locus in each sequence corresponds to a nucleotide in N1 “ tA, C, G, Tu,

it is natural to use a multinomial likelihood,

pYi,s | Xi “ x,θxL,sq
iid
„ Multp1; θxL,s,A, θxL,s,C, θxL,s,G, θxL,s,Tq,

where θxL,s “ pθxL,s,A, θxL,s,C, θxL,s,G, θxL,s,TqJ is a vector of probabilities summing up

to 1, and θxL,s,g is the probability of observing nucleotide g in position s for leaf xL.

To simplify the analysis and ease computation, we further assume that all locations s

are independent, leading to the following likelihood contribution for the ith sequence:

KpYi;θxq “

p
ź

s“1

ź

gPN1

θ1tYi,s“gu
x,s,g , (C.6)

where 1t¨u denotes the indicator function. As a conjugate prior for the nucleotide

probabilities, we choose

θx,s „ Dirpξx,s,A, ξx,s,C, ξx,s,G, ξx,s,Tq,
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with ξx,s “ pξx,s,A, ξx,s,C, ξx,s,G, ξx,s,TqJ a vector of hyperparameters. The posterior

distribution for the nucleotide probabilities at locus s under leaf x conditional on the

DNA sequences assigned to x is then

pθx,s | Dnq „ Dirpξx,s,A ` nx,s,A, ξx,s,C ` nx,s,C, ξx,s,G ` nx,s,G, ξx,s,T ` nx,s,Tq,

where nx,s,g “
ř

i:Xi,L“x 1tXi,s “ gu indicates the number of times nucleotide g P N1

is recorded at locus s for the DNA sequences linked to leaf x. The resulting posterior

kernel for θx is then a product of independent Dirichlet distributions, namely

ppθx | Dnq 9

p
ź

s“1

ź

gPN1

θξx,s,g`nx,s,g
x,s,g . (C.7)

An equivalent representation can be obtained for the 2-mer location multinomial

kernel detailed in Chapter 4, but with the support of the multinomial being all pairs

of nucleotides instead of singletons. When sequences are not aligned, the posterior

in equation (C.7) is modified to remove the product from s “ 1, . . . , p and substitute

nx,s,g with nx,g, which is the number of times κ-mer g is recorded in the sequence.

C.2.2 Prior and posterior predictive distribution

Once the parameters for the posterior distribution in equation (C.7) have been com-

puted for each x, BayesANT determines the prediction probabilities by following a

similar reasoning behind näıve Bayes classifiers and linear discriminant analysis. In

particular, let Xpnq “ pXiq
n
i“1 be the collection of labels and and Ypnq “ pYiq

n
i“1

be the associated DNA, and recall that Dn “ pXpnq,Xpnqq. Then, the conditional

distribution for the taxa of the pn ` 1qth sequence is obtained as

ppXn`1 | Yn`1,Dnq9ppXn`1,Yn`1,Y
pnq,Xpnq

q

9ppXn`1,Y
pnq

qppYn`1,Y
pnq

| Xn`1,Y
pnq

q

9ppXn`1 |Ypnq
qppYpnq

qppYpnq
|Xn`1,Y

pnq
qppYn`1 |Xn`1,Y

pnq,Ypnq
q

9ppXn`1 |Ypnq
qppYn`1 | Xn`1,Dnq.
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The above proportionality holds since ppXpnq | Xn`1,Y
pnqq “ ppXpnq | Ypnqq and

the joint distribution of the data ppDnq “ ppXpnqqppYpnq | Xpnqq is independent of

Xn`1 and Yn`1 and thus can regarded as constant. Calling pn`1pxq “ ppXn`1 “ x |

Yn`1,Dnq, it is straightforward from the above that

pn`1pxq 9 πn`1pxq

ż

KpYn`1;θxL
qppθxL

| DnqdθxL
, (C.8)

where πn`1pxq “ ppXn`1 “ x | Xpnqq is the prior probability defined in equa-

tion (C.5), while the integral is the posterior predictive distribution for DNA sequence

Xn`1 under branch x. Notice that if x contains a “new” taxon, equation (C.8) be-

comes a prior predictive distribution. The integral is explicitly available for the

multinomial kernel with Dirichlet prior defined above. Specifically, it is straight-

forward to see that the marginal distribution for Xi,s when the posterior follows a

Dirichlet is

Xn`1,s „ Mult
´

1;
ξx,s,A ` nx,s,A

Mx,s

,
ξx,s,C ` nx,s,C

Mx,s

,
ξx,s,G ` nx,s,G

Mx,s

,
ξx,s,T ` nx,s,T

Mx,s

¯

,

(C.9)

where Mx,s “
ř

gPN1
pξx,s,g ` nx,s,gq is a normalizing constant for the nucleotide

probabilities. The corresponding prior predictive probability is obtained by setting

nx,s,g “ 0 for every g P N1 and normalizing by ξx,s,0 “
ř

gPN1
ξx,s,g. Then, from

equation (C.9) and the location independence assumption, it can be easily shown

that equation (C.8) reduces to

pn`1pxq9

#

πn`1pxq
śp

s“1pξxL,s,gs ` nxL,s,gsq{MxL,s, if xL is an observed leaf,

πn`1pxq
śp

s“1 ξxL,s,gs{ξx,s,0, if xL is a novel leaf,

(C.10)

where gs P N1 is the nucleotide of sequence Yn`1 in locus s “ 1, . . . , p. Similar

considerations hold for the κ-product multinomial kernel and the not-aligned multi-

nomial kernel.

156



C.2.3 Hyperparameter tuning

From equation (C.10), it is easy to see that the hyperparameters ξv,s play an impor-

tant role in defining the prediction probabilities. This is especially true for “new”

leaves since no nucleotides are observed. As discussed in the main paper, uniform

priors in this context may underestimate the predicted number of new taxa at the

lowest level. Therefore, we need a method to tune ξv,s based on the information avail-

able in the taxonomic tree. To address this goal, we apply a method of moments

estimator as detailed below.

For a node xℓ at level ℓ, call Lnpxℓq the set of leaves linked to it. Under the

assumption that

θx,s
iid
„ Dirpξxℓ,s,A, ξxℓ,s,C, ξxℓ,s,G, ξxℓ,s,Tq, for all x P Lnpxℓq,

each nucleotide probability is marginally distributed as θx,s,g „ betapξxℓ,s,g, ξxℓ,s,0 ´

ξxℓ,s,gq, with ξxℓ,s,0 “
ř

gPN1
ξxℓ,s,g being the sum of the hyperparameters. From the

moments of a beta distribution, it holds that

Epθx,s,gq “
ξxℓ,s,g

ξxℓ,s,0

, and Epθ2x,s,gq “
ξxℓ,s,gpξxℓ,s,g ` 1q

ξxℓ,s,0pξxℓ,s,0 ` 1q
,

for g P N1. Our goal is to estimate both ξxℓ,s,0 and ξxℓ,s,g. This can be done as follows.

Recall that Nnpxq and nx,s,g are the number of sequences and the number of times

nucleotide g is recorded at locus s for all sequences linked to leaf x, respectively. Our

first method of the moments equation is

θ̂xℓ,s,g “
1

Nnpxℓq

ÿ

xPLnpxℓq

nx,s,g

Nnpxq
“
ξxℓ,s,g

ξxℓ,s,0

“ Epθx,s,gq. (C.11)

Here, θ̂gxℓ,s
is an average of the observed proportion of times nucleotide g appears in
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the sequences linked to all leaves x connected to xℓ. For our second equation, we set

Ŝxℓ,s “
1

Nnpxℓq

ÿ

xPLnpxℓq

ÿ

gPN1

´ nx,s,g

Nnpvq

¯2

“
ÿ

gPN1

ξxℓ,s,gpξxℓ,s,g ` 1q

ξxℓ,s,0pξxℓ,s,0 ` 1q
“

ÿ

gPN1

Epθ2x,s,gq,

(C.12)

where Ŝxℓ,s is the average sum of the squared nucleotide proportions for all x linked

to xℓ. Notice that the third component in the equation can be further simplified as

ÿ

gPN1

Epθ2x,s,gq “
ÿ

gPN1

ξxℓ,s,gpξxℓ,s,g ` 1q

ξxℓ,s,0pξxℓ,s,0 ` 1q
“

1

ξxℓ,s,0 ` 1

!

ξ0xℓ,s

ÿ

gPN1

´ξxℓ,s,g

ξxℓ,s,0

¯2

` 1
)

.

Then, plugging equation (C.11) into (C.12) and letting mvℓ,s “
ř

gPN1
θ̂2xℓ,s,g

, one has

that

Ŝxℓ,s “
1

ξxℓ,s,0 ` 1
pξxℓ,s,0mxℓ,s ` 1q,

which, combined with equation (C.11), yields

ξxℓ,s,0 “
1 ´ Ŝxℓ,s

Ŝxℓ,s ´ mxℓ,s

, and ξxℓ,s,g “ ξxℓ,s,0θ̂xℓ,s,g, g P N1. (C.13)

The quantities in equation (C.13) are the method of the moments estimators for our

hyperparameters, and we can use them to borrow information across branches, as

discussed in the main paper. We detail the procedure in Algorithm 5 below.

The idea behind this procedure is to incorporate taxonomic dependencies between

the leaves, especially novel ones. The procedure works equally for the κ-product

multinomial kernel.

C.3 Addedum to the analysis on FinBOL

In this Section, we provide additional results on the FinBOL datasets, prediction of

novel sequences by method, accuracies for model m-1 divided by order, and compu-

tational times.
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Algorithm 5: Hyperparameter tuning via the method of moments for the
multinomial kernel
1 for leaf xL P XL do
2 if xL is a known taxon then
3 Estimate ξxL´1,s,0 and ξxL´1,s,g, g P N1, from equation (C.13), where

xL´1 “ papxLq;
4 Set prior θxL,s „ DirpξxL´1,s,A, ξxL´1,s,C, ξxL´1,s,G, ξxL´1,s,Gq;

5 else
6 if xL is a new taxon then
7 Estimate ξxℓ,s,0 and ξxℓ,s,g, g P N1, from equation (C.13), where xℓ

is the lowest possible known taxon along the branch leading to
xL;

8 Set prior θxL,s „ Dirpξxℓ,s,A, ξxℓ,s,C, ξxℓ,s,G, ξxℓ,s,Gq;

9 end

10 end

11 end
12 Repeat the procedure for all locations s “ 1, . . . , p;

C.3.1 Accuracies and performance on novel taxa

We further comment on the model performances on FinBOL presented in Section 3.2

of the main paper by providing additional results. Table C.1 reports the accuracies at

the species level when the test sequences are from truly novel taxa. The columns in

the table under accuracy display the accuracies at the species levels. In particular,

all data are the same values as in Table 3 in the main document, while observed

and new are the values when the test sequences are from a truly observed taxon

or a novel one, respectively. The best performance is again obtained by model m-1

under both the whole set of queries and the novel ones. RDP and m-1, no new and

m-2, no new, instead, perform very well on the observed taxa. As mentioned in

the main discussion, models k-5 and k-6 have worse performance on every subset,

and they fail to predict the correct taxonomic placement of novel sequences. This is

consistent across scenarios.

The columns under new species show the number of sequences for which the
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Table C.1: Accuracies and prediction of novel taxa at the species level for BayesANT
and RDP under the scenarios described in Chapter 4. all data is the accuracy on
all the test query sequences. observed refers to the subset of test sequences whose
true taxa are observed in sample, while new is the accuracy on truly novel sequences.
The columns under new species report the behaviour of each method when the test
sequences are truly new. The number in parenthesis is the actual number of queries
with a new taxon at any level; pred. is the number of sequences that each algorithm
predicts as being new; t. pos. is short for “true positives” and reports the number
of truly new sequences that are predicted new; f. pos. is “false positives”, i.e. the
number of sequences that are truly observed but predicted new; f. neg. is “false
negatives”, and reports the number of sequences that are truly new but are predicted
to be from an observed taxon.

scenario 1 - random split scenario 2 - stratified split

accuracy new species (884) accuracy new species (2672)
model all data observed new pred. t. pos. f. pos. f. neg. all data observed new pred. t. pos. f. pos. f. neg.

m-1 85.2 93.1 31.1 958 746 212 138 70.6 93.7 33.7 2736 2566 170 106
(.82) (.87) (.47) (.7) (.85) (.47)

m-2 85.4 94.6 22.9 747 649 98 235 69.8 95.1 29.6 2506 2422 84 250
(.86) (.91) (.49) (.74) (.91) (.48)

k-5 79.2 90.8 0 187 88 99 796 56.8 92.5 0 550 507 43 2165
(.79) (.89) (.15) (.57) (.89) (.05)

k-6 80.3 92.1 0 333 214 119 670 57.4 93.5 0 1437 1375 62 1297
(.88) (.97) (.32) (.64) (.97) (.12)

m-1, no new 83.3 95.5 0 0 0 0 884 59.4 96.7 0 0 0 0 2672
(.92) (.96) (.62) (.78) (.97) (.49)

m-2, no new 83.2 95.4 0 0 0 0 884 59.1 96.2 0 0 0 0 2672
(.91) (.96) (.55) (.74) (.97) (.37)

rdp 83.1 95.3 0 0 0 0 884 58.9 95.9 0 0 0 0 2672
(.92) (.98) (.47) (.73) (.99) (.31)

methods predict a new taxon. We specifically include the number of true positives,

false positives and false negatives. To be counted as a true positive, for example,

the sequence must be predicted new when truly new. This does not imply that

the sequence is placed in the correct taxonomic clade, but simply that novelty is

recognized. Similar definitions apply to false positives and false negatives. The

multinomial aligned kernels predict a high number of new species, and are often able

to recognize true novelty. This is not true for the κ-mer counterparts, which are less

prone to predicting new sequences. Finally, m-1, no new, m-2, no new and RDP

do not allow for novelty by construction, and therefore they always result in false

negatives.
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Table C.2: Accuracies of BayesANT model m-1 across orders and scenarios. The
column n. seqs. is the number of query sequences that truly belongs to the order,
while n. new. is the number of truly novel sequences. all data is the accuracy
on all the test query sequences. observed refers to the subset of test sequences
whose true taxa are observed in sample, while new is the accuracy on truly novel
sequences.

scenario 1 - random split scenario 2 - stratified split
order n. seqs. n. new all data observed new n. seqs. n. new all data observed new

araneae 309 19 90.9 92.4 68.4 348 75 79.6 91.6 36.0
(0.79) (0.81) (0.46) (0.74) (0.85) (0.33)

coleoptera 1401 169 87.8 95.5 32.0 1442 518 72.3 96.3 29.5
(0.82 (0.87) (0.45) (0.67) (0.84) (0.37)

diptera 1470 385 74.8 90.3 30.9 1392 727 56.2 90.2 25.0
(0.74) (0.86) (0.41) (0.56) (0.86) (0.29)

hemiptera 162 37 74.1 88.8 24.3 419 288 46.8 83.2 30.2
(0.74) (0.79) (0.58) (0.67) (0.73) (0.64)

hymenoptera 1208 164 80.0 87.8 30.5 845 282 74.8 90.8 42.9
(0.86 (0.90) (0.57) (0.80) (0.88) (0.64)

lepidoptera 2016 82 93.8 96.5 29.3 1506 231 89.8 96.7 51.9
(0.85) (0.87) (0.38) (0.78) (0.86) (0.31)

others 359 28 86.6 92.1 21.4 973 551 62.0 93.1 38.1
(0.82) (0.83) (0.77) (0.76) (0.83) (0.70)

C.3.2 Accuracies of BayesANT m-1 by order

In this Section, we further report the prediction performance in the test set across or-

ders for BayesANT model m-1. Under both scenarios, Hemiptera and Diptera are the

taxa that appear to be harder to classify, followed by Coleoptera and Hymenoptera.

Unsurprisingly, Lepidoptera appears to be the easiest to classify, especially when the

true taxon of the test sequence is observed in training. As for novel taxa, sequences

in scenario 1 have very similar accuracies across orders, with the positive exception

of Araneae. In scenario 2, instead Lepidoptera and Hymenoptera have the highest

accuracies on novel taxa.

C.3.3 Computational times

In this Section, we report the elapsed times for each model presented in the main

paper. Operations were performed on an AMD Ryzen 3900-based dedicated server

with 128GB of memory on Ubuntu 20.04, R version 4.1.1, linked to Intel MKL 2019.5-

075. We split the prediction of all queries in the test data across 23 threads with
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Table C.3: Computational times in minutes for BayesANT under different choices of
kernel and for the RDP classifier.

scenario 1 scenario 2

model training prediction training prediction

m-1 1.68 1.37 1.40 1.23
m-2 2.84 1.41 2.48 1.24
k-5 0.51 5.22 0.45 4.56
k-6 0.77 21.59 0.72 19.23
m-1, no new 1.01 0.86 0.90 0.82
m-2, no new 1.99 0.89 1.86 0.83
rdp 2.70 1.67 2.48 1.55

the R packages foreach (Microsoft and Weston, 2022) and doParallel (Corporation

and Weston, 2022). The BayesANT source code is written in R and the functions

to perform the prediction are built-in and Rcpp (Eddelbuettel and Balamuta, 2018)

and RcppArmadillo (Eddelbuettel and Sanderson, 2014). The RDP classifier has a

source code in java, and we call it from R through the use of ad-hoc functions inspired

by the package rRDP (Hahsler and Nagar, 2021). Table C.3 reports the elapsed times

for each method when training the sequences in scenarios 1 and 2. Notice that all

BayesANT models except the k-5 and k-6 do not account for the time required to

align the data. Times refer to a training library of 27,699 sequences whose taxonomy

is across seven levels. The number of nodes in the last level is 10,244 in scenario 1 and

9,490 in scenario 2, while the number of test sequences is 6,925. We notice that the

κ-mer models are considerably faster in training, but their prediction requires more

time than their aligned counterparts. Moreover, setting BayesANT to include new

branches in the taxonomy comes with a slightly higher cost in terms of prediction

and the computational time required for training.
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C.4 Assessing the impact of alignment gaps “-” in the sequences

In this Section, we show how alignment gaps “-” affect BayesANT predictions, both in

terms of general accuracy and the rate of discovery of missing taxa. We first evaluate

the effect of alignment gaps on randomly generated synthetic reference libraries of

DNA sequences, and we later report on their impact on the prediction in the finbol

library.

C.4.1 Simulation strategy for DNA barcoding libraries

We simulate synthetic DNA barcoding libraries by relying on two main components:

a hierarchical taxonomy and a mutation process for the DNA sequences. We generate

the first one via the level- and node-specific Pitman–Yor process described by the

urn scheme in equation (C.3), fixing one αℓ and one σℓ for each rank. In particular,

we start by drawing one random sample of size n “ 10, 000 from a Pitman–Yor

with parameters α1 and σ1 for the first level. This produces a sequence of distinct

clusters X˚
1,1, . . . , V

˚
Knpv0q,1 with frequencies n1,1, . . . , nKnpv0q,1. Then, for each taxon

V ˚
j,1 we draw another random Pitman–Yor sample of size nj,1 with parameters α2, σ2

to generate the nodes in the second taxonomic level. We repeat the procedure until

the desired rank L, which we set equal to 4. The advantage of this generative scheme

is that it can easily control both the size of the branches and the overall number of

leaves. For example, low values for αℓ and σℓ generate few clusters with high counts,

while high values tend to create many branches with few or a single observation.

With this strategy, we generate three libraries of different sizes. Table C.4 reports

the simulation parameters and their associated descriptive statistics. Library 1 has

a low number of leaves with many reference sequences associated with them on

average. Library 2 shows a higher ramification, with 5 DNA sequences associated

with its leaves on average. Finally, Library 3 has a large number of leaves, resulting
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in only one or two reference sequences per leaf.

Table C.4: Parameters and descriptive statistics for the simulated libraries. n. taxa
refers to the number of distinct taxa in the library at a given level. avg. seq. refers
to the average number of reference sequences per taxa (generated taxa counts).

Library 1 Library 2 Library 3

level α σ n. taxa avg. seq. α σ n. taxa avg. seq. α σ n. taxa avg. seq.

1 1 0 11 909.1 1 0 9 1111.1 2.5 0 25 400
2 1 0 46 217.4 1 0.1 67 149.3 2.5 0.1 246 40.7
3 1 0 142 70.4 1 0.25 421 23.8 2.5 0.25 1255 8.0
4 1 0 374 26.7 1 0.4 1816 5.5 2.5 0.4 3744 2.7

Once the taxonomic counts are generated, we populate the tree with aligned

DNA sequences through recursive mutations of an ancestral root sequence of p “

300 base pairs generated randomly. These mutations, ideally, should maintain a

coherent DNA sequence structure such that within-taxon similarity is higher than

the between-taxa ones for each rank. We obtain this by mutating sequences via an

evolution model based on coalescent processes. Specifically, let Xxℓ
“ pXxℓ,jq

p
j“1 be

the “representative” ancestral sequence associated with a node xℓ at level ℓ. These are

never observed in real datasets like FinBOL and are not modelled by our framework,

but we introduce them for the purpose of this simulation. Then, the jth nucleotide

of an ancestral sequence Xxℓ`1
where papxℓ`1q “ xℓ mutates with probability

ppXxℓ`1,j “ g | Xvℓ,j “ g1, tq “

#

1
4

` 3
4
e´4λt if g “ g1,

1
4

´ 1
4
e´4λt if g ‰ g1,

(C.14)

with g, g1 P N1 “ tA,C,G,Tu and where λ is an instantaneous rate of substitution and

t is known as coalescent time. The mutation process specified by equation (C.14)

commonly known as Jukes-Cantor evolution model (Jukes and Cantor, 1969), as

λ is equal for transitions - purine (A,G) Ø purine (A,G) and pyrimidine (C,T) Ø

pyrimidine (C,T) - and transversions - purine (A,G) Ø pyrimidine (C,T). While such

an evolutionary model relies on overly simplistic assumptions, having a more complex
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mutation process would go beyond the purpose of our study. The steps to create

the taxonomy are the following. First, we randomly generate one ancestral sequence

of length p “ 300, assigning equal probability to each nucleotide A, C, G, and T.

We treat the first 25 loci as a conserved region, fixing them across the whole library.

Then, we generate a coalescent process of size Knpv0q, where Knpv0q is the number of

nodes at the first rank of the taxonomic tree generated via Pitman–Yor. The process

returns the mutation times t1, . . . , tKnpv0q, which determine the mutation probabilities

for the nucleotides in the ancestral sequence beyond the conserved region as in (C.14).

This creates Knpv0q new ancestral sequences, one for each taxon at the first level.

Then, we repeat the process for each generic node v until the lowest level. To vary

sequence similarities, we specify a different rate of mutation λℓ for each level. Values

for λℓ close to 0 lead to very similar sequences and low mutations, while higher values

lead to rapid differentiation. The advantage of this simulation strategy is that it

makes certain taxa “share” a mutation history more than others. For our simulation,

we chose pλ1, λ2, λ3, λ4q “ p.1, .1, .05, .02q. Finally, we further mutate the sequences in

the leaf nodes by perturbing all the loci outside the conserved region with probability

0.01 and selecting another nucleotide at random with equal probability. Coalescent

times for each node and level are generated using the function rcoal() in the R

software packages ape (Paradis and Schliep, 2019), while mutations are obtained

through the function simSeq of the package phangorn (Schliep, 2011). Figure C.1

displays the sequence similarities and the cluster distribution of the three libraries.

Unlike the FinBOL data, these libraries have a much clearer cluster separation, which

helps in improving the classification performance.

C.4.2 Prediction performance under simulated gaps

Alignment gaps can be indirectly regarded as a measure of the overall “quality” of

the DNA sequences. In the software BayesANT, we treat them as missing values.
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Figure C.1: Pairwise DNA similarities in each of the three generated libraries.

This means we ignore the likelihood contribution of locations with gaps when cal-

culating the probabilities in equation (C.10). This makes the posterior prediction

probabilities closer to the prior ones. In the most extreme case of a sequence com-

posed solely of alignment gaps and no other nucleotide, BayesANT will return the

branch with the leaf having the highest frequency (i.e. the highest number of DNA

sequences linked to it). This property is inherited by the Pitman–Yor process, as

easily seen from equation C.1. We verify this behaviour by running a simulation

on the libraries generated in the previous section. As a first step, we randomly re-

place each nucleotide in every sequence in the libraries with a gap with probability

r. If r “ 0, no alignment gap is inserted, whereas the case when r “ 0.99 leads

to a dataset where all sequences are almost entirely made of gaps. Then, we train

BayesANT with an aligned single-multinomial kernel on 5,000 randomly selected se-

quences, and we predict the taxonomic affiliation of the remaining 5,000. We repeat

this process for values of r P t0, 0.1, 0.2, . . . , 0.9, 0.99u. Figure C.2 depicts the test

prediction accuracy at each taxonomic rank for the three libraries at varying values

of r. We notice the following. First, Library 1 has the highest prediction accuracy at

the lowest level when compared to the other two. This is expected since it features
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a larger average number of sequences per leaf. Second, the predictive performance

of BayesANT deteriorates uniformly across levels and libraries, as less information

is available in the training and test data due to the increasing rate of missing values.

Third, when q “ 0.99, the accuracy never quite reaches zero, and sometimes it is

still high for higher levels. This happens because BayesANT predicts the taxon that

appears with the highest frequency for each query test sequence. The composition

of the train and the test data is approximately similar due to the random splitting

mechanism, so a small fraction of sequences for which the classification will be cor-

rect. For example, in Library 2, the accuracy at Level 1 is roughly 0.5 since 1/2

of the sequences in the test set are associated with the most frequent cluster in the

training set. When we look at Level 4, we notice that the accuracy reaches values

close to zero due to the high number of leaves, which leads to low prior probabilities.

Library 1 Library 2 Library 3
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Probability of missing location "−"

A
cc

ur
ac

y

Taxonomic rank Level1 Level2 Level3 Level4

Figure C.2: Prediction accuracy at every taxonomic rank in each simulated library
for varying missingness probability.

Figure C.3 reports the behavior of BayesANT under the simulation scenarios de-

scribed above when the taxonomic affiliation of the test sequences is not observed

in the training set. The true number of sequences having novel taxa is 103 in li-

brary 1, 712 in library 2 and 1673 in library 3. When there is complete absence of
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missing gaps, the number of sequences predicted to be new are 200, 467 and 1178,

respectively. We notice the same consistent behaviour across three libraries: high

missingness rates lead to fewer and fewer sequences to be predicted as novel. This is

again a property of the Pitman–Yor prior, which tends to assign higher probabilities

to observed taxa for small-to-moderate values for α and σ. Structurally, BayesANT

will rarely label as novel any test sequence having a large number of alignment gaps.

Library 1 Library 2 Library 3
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Figure C.3: Prediction of the novel taxonomic leaves for varying missingness prob-
ability. The red points indicate the accuracy of the algorithm, while the blue one
indicates the percentage of sequences recognized as new (but not necessarily in the
correct branch) as a fraction of sequences labeled with taxa that are not observed in
the training set.

C.4.3 Alignment gaps “-” in finbol

As detailed in the main document, the FinBOL library (Roslin et al., 2022) is a

dataset of DNA barcodes that have been carefully annotated through morphological

inspection. The version we consider features 34,624 globally aligned sequences of

length equal to 658 base pairs. This alignment process results in 15, 833 (45.7%)

sequences containing at least one gap “-”, with median value of 5 and a maximum

of 174. Notice that every sequence showed a gap in the first location, which we have
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thus excluded from this count. Overall, missing values are rather infrequent in the

library due to the high quality of its barcodes. We expect them to have a relatively

low impact on the prediction outcome. Figure C.4 displays the distribution of the

prediction probabilities of the m-1 model as a function of the number of gaps in the

test sequences (excluding the first location). The red boxplots refer to queries where

BayesANT is wrong, while the ones in blue are those that are correctly predicted.

The highest number of gaps detected in the test set is 160 in both cases. For a

description of scenarios 1 and 2, refer to the main document. When BayesANT

is correct, it is easy to see that the species probabilities roughly have the same

distribution across scenarios as the number of gaps increases. When BayesANT is

wrong, instead, the median probability increases mildly when the counts are 1-4,

5-25 and 26-50 in Scenario 1 and 1-4, 5-25 and 26-50 and 51-100 in Scenario 2, but

decreases again for the remaining categories. This suggests that gaps in FinBOL

have a minor impact on the prediction probabilities and that fluctuations in the

distributions are due to decreasing sample sizes and choices in the partition of the

gap categories. Finally, we can see that the accuracy fluctuates as the missingness

increase: in Scenario 1, the fraction of correctly predicted sequences under 0 gaps

is 3188{p616 ` 3188q « 0.84, and becomes approximately 0.79 when gaps are 1-4,

0.85 under 5-25, 0.66 for 26-50, 0.78 for 51-100 and 0.78 again for 101-161. Similar

trends can be seen in Scenario 2, where the accuracy values are, respectively, 0.72,

0.70, 0.70, 0.64, 0.70 and 0.62. This again confirms that there is no clear decreasing

trend in accuracy.

C.5 Assessing the effect of the size of the training library

In this Section, we evaluate the performance of BayesANT and RDP on FinBOL by

varying the size of the training dataset in the two training-test splitting scenarios

described in the main paper. As the training library becomes smaller, we expect to
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Figure C.4: Prediction probabilities at the species level in the test set as a func-
tion of the number of alignment gaps detected in the sequences. The number of gaps
has been grouped into categories to ease visualization. Red boxplots indicate the
sequences where the prediction is wrong, while blue boxplots refer to the cases where
BayesANT predicts the true taxonomic branch. The numbers above each boxplot
indicate the absolute count of the sequences in each gap counts group across predic-
tion correctness. For example, there are a total of 3804 sequences in the test set with
no alignment gap in Scenario 1. In these, BayesANT is correct on 3188 of them and
wrong in 616.

see more query sequences whose taxonomic annotation is unobserved. This allows

us to test how sensitive BayesANT is with respect to the size of the training library

and whether its predictions are still calibrated. When the true taxon is observed, we

expect the accuracy to be stable and independent of the size of the training dataset.

When the true taxon is new, we expect a similar behaviour as well, but with a

lower accuracy due to the inherited difficulty of placing a novel sequence in the

correct branch. Figueres C.5, C.6 and C.7 show the results of a simulation where we

randomly take a fraction q of the FinBOL library to use as training set, and use the

remaining 1´q fraction as test. The values for q we choose are q “ t0.1, 0.2, . . . , 0.9u,

with q “ 0.1 representing 10% of the library and q “ 0.8 reporting the case described

in the main paper. We notice the following. In Figure C.5, both the accuracy and
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Figure C.5: Accuracies (solid lines) and average prediction probabilities (dashed
lines) in the test sets for RDP and BayesANT under the splitting scenarios described
in the main document. The size of the training library is displayed on the horizontal
axis as fractions of the FinBOL library, subsetted at random.

the average prediction probability at the species level increase with the size of the

library. This is expected since larger libraries contain more information and a larger

number of observed species. In particular, we notice that RDP and models m-1 and

m-2 have a similar accuracy for almost all fractions, with the exception of q “ 0.1

and q “ 0.2 for m-1. As discussed in the main document, models k-5 and k-6

have lower accuracy than their aligned counterparts consistently across fractions and

scenarios. The dashed lines in the plot represent prediction probabilities. The closer

the probability path is to the solid line, the more the algorithm is well calibrated.

Models m-1 and m-2, whose values for ρ have been selected to 0.1 for the first and

0.06 for the second in both scenarios, appear to have a better calibration than RDP.

Figures C.6 and C.7 display the accuracies. The prediction probabilities under

the same setting are described in Figure C.5 for the sequences whose true taxonomic

annotations are, respectively, observed and not observed in the training library. We

can see that the behaviour of m-1, m-2 and RDP is rather stable across all sizes.

171



BayesANT K−5 BayesANT K−6 BayesANT M−1 BayesANT M−2 RDP

S
cenario 1

S
cenario 2

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Fraction of FinBOL used as training library

A
cc

ur
ac

y 
(s

ol
id

) 
an

d 
av

g.
 p

ro
b.

 (
da

sh
ed

)

Figure C.6: Accuracies (solid lines) and average prediction probabilities (dashed
lines) for the test sequences whose true taxa are observed in training. See Figure C.5.

In particular, when the true taxa are observed, we see that accuracies are always

high and prediction probabilities are generally calibrated. When the taxa are new,

RDP is structurally always wrong but shows a low prediction probability (around

0.4). As for BayesANT, accuracies are constant for m-1 and m-2, while they are

equal to 0 for k-5 and k-6. This suggests that the multinomial kernel over the κ-mer

decomposition is unsuitable for novel species prediction under this aligned library.
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Figure C.7: Accuracies (solid lines) and average prediction probabilities (dashed
lines) for the test sequences whose true taxa are not observed in training. See Fig-
ure C.5.
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Hämäläinen, K., Junninen, K., Maunula, M., Purhonen, J., and Ovaskainen, O.
(2020), “Fungal communities decline with urbanization – more in air than soil,”
The ISME Journal, 14, 2806–2815.

Airoldi, E. M., Costa, T., Bassetti, F., Leisen, F., and Guindani, M. (2014), “Gener-
alized Species Sampling Priors With Latent Beta Reinforcements,” Journal of the
American Statistical Association, 109, 1466–1480.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990), “Basic
local alignment search tool,” Journal of Molecular Biology, 215, 403–410.

Antoniak, C. E. (1974), “Mixtures of Dirichlet processes with applications to
Bayesian nonparametric problems,” Annals of Statistics, 2, 1152–1174.

Arrhenius, O. (1921), “Species and Area,” Journal of Ecology, 9, 95–99.

Ascolani, F., Lijoi, A., and Ruggiero, M. (2021), “Predictive inference with
Fleming–Viot-driven dependent Dirichlet processes,” Bayesian Analysis, 16, 371–
395.

Ascolani, F., Lijoi, A., Rebaudo, G., and Zanella, G. (2022), “Clustering consistency
with Dirichlet process mixtures,” Biometrika, asac051.

Barry, D. and Hartigan, J. A. (1992), “Product Partition Models for Change Point
Problems,” The Annals of Statistics, 20, 260–279.

Bassetti, F., Crimaldi, I., and Leisen, F. (2010), “Conditionally identically dis-
tributed species sampling sequences,” Advances in Applied Probability, 42,
433–459.

174



Battiston, M., Favaro, S., Roy, D. M., and Teh, Y. W. (2018), “A characterization of
product-form exchangeable feature probability functions,” The Annals of Applied
Probability, 28, 1423 – 1448.

Bazinet, A. L. and Cummings, M. P. (2012), “A comparative evaluation of sequence
classification programs,” BMC Bioinformatics, 13, 92.

Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell,
J., and Sayers, E. W. (2012), “GenBank,” Nucleic Acids Research, 41, D36–D42.

Berti, P., Pratelli, L., and Rigo, P. (2004), “Limit theorems for a class of identically
distributed random variables,” Annals of Probability, 32, 2029–2052.

Berti, P., Dreassi, E., Pratelli, L., and Rigo, P. (2021), “A class of models for Bayesian
predictive inference,” Bernoulli, 27, 702–726.

Betancourt, B., Zanella, G., and Steorts, R. C. (2020), “Random Partition Models
for Microclustering Tasks,” Journal of the American Statistical Association, 117,
1215–1227.

Blackwell, D. and MacQueen, J. B. (1973), “Ferguson distributions via Pólya urn
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